【題目】

已知曲線上的點到點的距離比它到直線的距離小2.

1)求曲線的方程;

2)曲線在點處的切線軸交于點.直線分別與直線軸交于點,以為直徑作圓,過點作圓的切線,切點為,試探究:當點在曲線上運動(點與原點不重合)時,線段的長度是否發(fā)生變化?證明你的結論.

【答案】1.2)當點P在曲線上運動時,線段AB的長度不變,證明見解析.

【解析】

試題(1)思路一:設為曲線上任意一點,

依題意可知曲線是以點為焦點,直線為準線的拋物線,

得到曲線的方程為.

思路二:設為曲線上任意一點,

,化簡即得.

2)當點P在曲線上運動時,線段AB的長度不變,證明如下:

由(1)知拋物線的方程為,

,得,

應用導數(shù)的幾何意義,確定切線的斜率,進一步得切線的方程為.

,得.

,得.

根據(jù),得圓心,半徑,

由弦長,半徑及圓心到直線的距離之關系,確定.

試題解析:解法一:(1)設為曲線上任意一點,

依題意,點S的距離與它到直線的距離相等,

所以曲線是以點為焦點,直線為準線的拋物線,

所以曲線的方程為.

2)當點P在曲線上運動時,線段AB的長度不變,證明如下:

由(1)知拋物線的方程為,

,則

,得切線的斜率

,

所以切線的方程為,即.

,得.

,得.

,所以圓心,

半徑,

.

所以點P在曲線上運動時,線段AB的長度不變.

解法二:

1)設為曲線上任意一點,

,

依題意,點只能在直線的上方,所以

所以,

化簡得,曲線的方程為.

2)同解法一.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱為函數(shù)局部對稱點”.

1,其中,試判斷是否有局部對稱點?若有,請求出該點;若沒有,請說明理由;

2)若函數(shù)在區(qū)間內(nèi)有局部對稱點,求實數(shù)m的取值范圍;

3)若函數(shù)R上有局部對稱點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4―4:坐標系與參數(shù)方程]

在直角坐標系xOy中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為.

(1)若a=1,求Cl的交點坐標;

(2)若C上的點到l的距離的最大值為,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應的生產(chǎn)能耗(噸)標準煤的幾組對照數(shù)據(jù):

(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;

(2)已知該廠技改前,100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤.試根據(jù)(1)求出的線性回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?

,參考數(shù)值:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)學中有許多形狀優(yōu)美、寓意美好的曲線,曲線C就是其中之一(如圖).給出下列三個結論:

①曲線C恰好經(jīng)過6個整點(即橫、縱坐標均為整數(shù)的點);

②曲線C上任意一點到原點的距離都不超過;

③曲線C所圍成的“心形”區(qū)域的面積小于3.

其中,所有正確結論的序號是

A. B. C. ①②D. ①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班主任對全班50名學生進行了作業(yè)量多少的調(diào)查,喜歡玩電腦游戲的同學認為作業(yè)多的有18人,認為作業(yè)不多的有9人,不喜歡玩電腦游戲的同學認為作業(yè)多的有8人,認為作業(yè)不多的有15人,則認為喜歡玩電腦游戲與認為作業(yè)量的多少有關系的把握大約是多少?

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用0與1兩個數(shù)字隨機填入如圖所示的5個格子里,每個格子填一個數(shù)字,并且從左到右數(shù),不管數(shù)到哪個格子,總是1的個數(shù)不少于0的個數(shù),則這樣填法的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當時,討論函數(shù)圖象的交點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對任意實數(shù),給出下列命題:①的充要條件;②是無理數(shù)是無理數(shù)的充要條件;③的充分條件;④的必要條件;其中真命題的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案