【題目】某工廠擬修建一個(gè)無(wú)蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為米,高為米,體積為立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面的建造成本為100/平方米,底面的建造成本為160/平方米,該蓄水池的總建造成本為元(為圓周率).該蓄水池的體積最大時(shí)______.

【答案】8

【解析】

由已知中側(cè)面積和底面積的單位建造成本,結(jié)合圓柱體的側(cè)面積及底面積公式,根據(jù)該蓄水池的總建造成本為元,構(gòu)造方程并整理,可將表示,從而可表示成的函數(shù),結(jié)合實(shí)際求出的范圍,利用導(dǎo)數(shù)求出的最大值,計(jì)算最大時(shí)的值.

蓄水池側(cè)面的總成本為元,底面的總成本為元,

蓄水池的總成本為.

又根據(jù)題意得,

,從而.

,又由可得

函數(shù)的定義域?yàn)?/span>,

,

,解得(因,舍去).

當(dāng)時(shí),,故上為增函數(shù);

當(dāng)時(shí),,故上為減函數(shù).

由此可知,處取得最大值,此時(shí).

故答案為:8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《張丘建算經(jīng)》是中國(guó)古代的著名數(shù)學(xué)著作,該書(shū)表明:至遲于公元5世紀(jì),中國(guó)已經(jīng)系統(tǒng)掌握等差數(shù)列的相關(guān)理論,該書(shū)上卷22題又女工善織問(wèn)題今有女善織,日益功疾,初日織五尺,今一月曰織九匹三丈,問(wèn)日益幾何?,大概意思是:有一個(gè)女工人善于織布,每天織布的尺數(shù)越來(lái)越多且成等差數(shù)列,第一天知5尺,30天共織九匹三丈,問(wèn)每天增加的織布數(shù)目是多少寸?答案是__________.(注:當(dāng)時(shí)一匹為四丈,一丈為十尺,一尺為十寸,結(jié)果四舍五入精確到寸)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的極坐標(biāo)為,直線(xiàn)的極坐標(biāo)方程為,且點(diǎn)在直線(xiàn)

)求的值和直線(xiàn)的直角坐標(biāo)方程及的參數(shù)方程;

)已知曲線(xiàn)的參數(shù)方程為,(為參數(shù)),直線(xiàn)交于兩點(diǎn),求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正三棱柱的所有棱長(zhǎng)都為,的中點(diǎn),邊上,.

1)證明:平面平面;

2)若是側(cè)面內(nèi)的動(dòng)點(diǎn),且平面.

①在答題卡中作出點(diǎn)的軌跡,并說(shuō)明軌跡的形狀(不需要說(shuō)明理由);

②求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐PABCD中,△PAB是邊長(zhǎng)為2的等邊三角形,底面ABCD為直角梯形,ABCD,ABBC,BCCD1PD.

1)證明:ABPD.

2)求二面角APBC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)一年中各月份的收入、支出情況的統(tǒng)計(jì)如圖所示,下列說(shuō)法中正確的是______.

①2至3月份的收入的變化率與11至12月份的收入的變化率相同;

②支出最高值與支出最低值的比是6:1;

③第三季度平均收入為50萬(wàn)元;

④利潤(rùn)最高的月份是2月份。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有兩個(gè)零點(diǎn),且.

1)求的取值范圍;

2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在四邊形中,,,,.沿著翻折至的位置,平面,連結(jié),如圖2.

1)當(dāng)時(shí),證明:平面平面;

2)當(dāng)三棱錐的體積最大時(shí),求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正四棱錐的底邊長(zhǎng)為2,側(cè)棱長(zhǎng)為上一點(diǎn),且,點(diǎn),分別為,上的點(diǎn),且.

1)證明:平面平面

2)求銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案