【題目】設橢圓)的右焦點為,短軸的一個端點的距離等于焦距.

1)求橢圓的標準方程;

2)設、是四條直線,所圍成的矩形在第一、第二象限的兩個頂點,是橢圓上任意一點,若,求證:為定值;

3)過點的直線與橢圓交于不同的兩點,且滿足△與△的面積的比值為,求直線的方程.

【答案】12)證明見解析(3

【解析】

1)根據橢圓焦點坐標求得,根據短軸端點到焦點的距離求得,由此求得,進而求得橢圓的標準方程.

2)求得的坐標,設出點坐標,結合向量的坐標運算,由求得,也即求得點坐標,將其代入橢圓,化簡后證得為定值.

3)將三角形和三角形的面積的比值,轉化為邊長的比值,即.當直線斜率不存在時,根據橢圓的對稱性可知,不符合題意.當直線的斜率不存在時,設出直線的方程.代入橢圓方程,化簡后寫出韋達定理.,求得,代入韋達定理,由此解方程求得的值,進而求得直線的方程.

1)由已知,

,故,

所以,,所以,橢圓的標準方程為

2,

,則,

由已知,即,

所以 ,所以,化簡得為定值.

3等價于,

當直線的斜率不存在時,,不合題意.

故直線的斜率存在,設

消去,得,

,,則①,②,

,得,,將其代入①②,得③,④.將③代入④,化簡得,解得

所以,直線的方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx),gx)滿足關系gx)=fxfx),其中α是常數(shù).

(1)設fx)=cosx+sinx,,求gx)的解析式;

(2)設計一個函數(shù)fx)及一個α的值,使得;

(3)當fx)=|sinx|+cosx,時,存在x1,x2R,對任意xR,gx1)≤gx)≤gx2)恒成立,求|x1-x2|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,為拋物線上的點,若直線經過點且斜率為,則稱直線為點的“特征直線”.為方程)的兩個實根,記.

1)求點的“特征直線”的方程;

2)已知點在拋物線上,點的“特征直線”與雙曲線經過二、四象限的漸進線垂直,且與軸的交于點,點為線段上的點.求證:;

3)已知、是拋物線上異于原點的兩個不同的點,點、的“特征直線”分別為、,直線、相交于點,且與軸分別交于點.求證:點在線段上的充要條件為(其中為點的橫坐標).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】棋盤上標有第、、、站,棋子開始位于第站,棋手拋擲均勻硬幣走跳棋游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到調到第站或第站時,游戲結束.設棋子位于第站的概率為.

1)當游戲開始時,若拋擲均勻硬幣次后,求棋手所走步數(shù)之和的分布列與數(shù)學期望;

2)證明:

3)求、的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出定理:在圓錐曲線中,是拋物線的一條弦,的中點,過點且平行于軸的直線與拋物線的交點為.兩點縱坐標之差的絕對值,則的面積,試運用上述定理求解以下各題:

1)若所在直線的方程為,的中點,過且平行于軸的直線與拋物線的交點為,求;

2)已知是拋物線的一條弦,的中點,過點且平行于軸的直線與拋物線的交點為,分別為的中點,過且平行于軸的直線與拋物線分別交于點,若兩點縱坐標之差的絕對值,求;

3)請你在上述問題的啟發(fā)下,設計一種方法求拋物線:與弦圍成成的“弓形”的面積,并求出相應面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,,分別是橢圓的左右焦點,過點的直線交橢圓于兩點,且的周長為12

(Ⅰ)求橢圓的方程

(Ⅱ)過點作斜率為的直線與橢圓交于兩點,試判斷在軸上是否存在點,使得是以為底邊的等腰三角形若存在,求點橫坐標的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)參加項目生產的工人為人,平均每人每年創(chuàng)造利潤萬元.根據現(xiàn)實的需要,從項目中調出人參與項目的售后服務工作,每人每年可以創(chuàng)造利潤萬元(),項目余下的工人每人每年創(chuàng)造利圖需要提高

1)若要保證項目余下的工人創(chuàng)造的年總利潤不低于原來名工人創(chuàng)造的年總利潤,則最多調出多少人參加項目從事售后服務工作?

2)在(1)的條件下,當從項目調出的人數(shù)不能超過總人數(shù)的時,才能使得項目中留崗工人創(chuàng)造的年總利潤始終不低于調出的工人所創(chuàng)造的年總利潤,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象過點和點.

1)求函數(shù)的最大值與最小值;

2)將函數(shù)的圖象向左平移個單位后,得到函數(shù)的圖象;已知點,若函數(shù)的圖象上存在點,使得,求函數(shù)圖象的對稱中心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果實系數(shù)、、都是非零常數(shù).

1)設不等式的解集分別是、,試問的什么條件?并說明理由.

2)在實數(shù)集中,方程的解集分別為,試問的什么條件?并說明理由.

3)在復數(shù)集中,方程的解集分別為,證明:的充要條件.

查看答案和解析>>

同步練習冊答案