【題目】已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為,則的坐標(biāo)為_____________,直線與橢圓交于,兩點(diǎn),且的重心恰為點(diǎn),則直線斜率為_____________.

【答案】

【解析】

1:由橢圓的標(biāo)準(zhǔn)方程結(jié)合右焦點(diǎn)的坐標(biāo),直接求出a, c,再根據(jù)橢圓中a,b,c之間的關(guān)系求出m的值,最后求出上頂點(diǎn)B的坐標(biāo);

2:設(shè)出直線MN的方程,與橢圓聯(lián)立,消去一個(gè)未知數(shù),得到一個(gè)一元二次方程,利用一元二次方程根與系數(shù)的關(guān)系,結(jié)合中點(diǎn)坐標(biāo)公式求出弦MN的中點(diǎn)的坐標(biāo),再利用三角形重心的性質(zhì),結(jié)合平面向量共線定理進(jìn)行求解即可.

1:因?yàn)?/span>右焦點(diǎn)為,所以有,

,所以,因此橢圓上頂點(diǎn)的坐標(biāo)為:

2:設(shè)直線MN的方程為:,由(1)可知:橢圓的標(biāo)準(zhǔn)方程為:

,直線方程與橢圓方程聯(lián)立:,化簡得:

,設(shè),線段的中點(diǎn)為,于是有:,

所以點(diǎn)坐標(biāo)為:

因?yàn)?/span>的重心恰為點(diǎn),所以有,

,

因此有:,

得:,所以直線斜率為.

故答案為:;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在的偶函數(shù),且.當(dāng)時(shí),,若方程300個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二年級(jí)進(jìn)行選課走班,已知語文、數(shù)學(xué)、英語是必選學(xué)科,另外需從物理、化學(xué)、生物、政治、歷史、地理6門學(xué)科中任選3門進(jìn)行學(xué)習(xí). 現(xiàn)有甲、乙、丙三人,若同學(xué)甲必選物理,則下列結(jié)論正確的是(

A.甲的不同的選法種數(shù)為10

B.甲、乙、丙三人至少一人選化學(xué)與全選化學(xué)是對(duì)立事件

C.乙同學(xué)在選物理的條件下選化學(xué)的概率是

D.乙、丙兩名同學(xué)都選物理的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠的某種產(chǎn)品成箱包裝,每箱200件,每一箱產(chǎn)品在交付用戶之前要對(duì)產(chǎn)品作檢驗(yàn),如檢驗(yàn)出不合格品,則更換為合格品檢驗(yàn)時(shí),先從這箱產(chǎn)品中任取20件作檢驗(yàn),再根據(jù)檢驗(yàn)結(jié)果決定是否對(duì)余下的所有產(chǎn)品作檢驗(yàn),設(shè)每件產(chǎn)品為不合格品的概率都為,且各件產(chǎn)品是否為不合格品相互獨(dú)立

(1)記20件產(chǎn)品中恰有2件不合格品的概率為,的最大值點(diǎn)

(2)現(xiàn)對(duì)一箱產(chǎn)品檢驗(yàn)了20件,結(jié)果恰有2件不合格品,以(1)中確定的作為的值已知每件產(chǎn)品的檢驗(yàn)費(fèi)用為2元,若有不合格品進(jìn)入用戶手中,則工廠要對(duì)每件不合格品支付25元的賠償費(fèi)用

(i)若不對(duì)該箱余下的產(chǎn)品作檢驗(yàn),這一箱產(chǎn)品的檢驗(yàn)費(fèi)用與賠償費(fèi)用的和記為,求;

(ii)以檢驗(yàn)費(fèi)用與賠償費(fèi)用和的期望值為決策依據(jù),是否該對(duì)這箱余下的所有產(chǎn)品作檢驗(yàn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:

是偶函數(shù);的最大值為

個(gè)零點(diǎn);在區(qū)間單調(diào)遞增.

其中所有正確結(jié)論的編號(hào)是(

A.①②B.①③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三棱錐中,面.

1)若,求證:;

2)若,,,且互余,求直線和面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校擬從甲、乙兩名同學(xué)中選一人參加疫情知識(shí)問答競賽,于是抽取了甲、乙兩人最近同時(shí)參加校內(nèi)競賽的十次成績,將統(tǒng)計(jì)情況繪制成如圖所示的折線圖.根據(jù)該折線圖,下面結(jié)論正確的是(

A.甲、乙成績的中位數(shù)均為7

B.乙的成績的平均分為6.8

C.甲從第四次到第六次成績的下降速率要大于乙從第四次到第五次的下降速率

D.甲的成績的方差小于乙的成績的方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,,求的最大值;

2)當(dāng)時(shí),討論極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在傳染病學(xué)中,通常把從致病刺激物侵入機(jī)體或者對(duì)機(jī)體發(fā)生作用起,到機(jī)體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對(duì)應(yīng)的相關(guān)癥狀時(shí)止的這一階段稱為潛伏期.

(1)一研究團(tuán)隊(duì)統(tǒng)計(jì)了某地區(qū)1000名患者的相關(guān)信息,得到如下表格,

該傳染病的潛伏期受諸多因素影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過6天為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為潛伏期與患者年齡有關(guān)

潛伏期≤6

潛伏期>6

總計(jì)

50歲以上(含50歲)

100

50歲以下

55

總計(jì)

200

(2)以這1000名患者的潛伏期超過6天的頻率,代替該地區(qū)1名患者潛伏期超過6天發(fā)生的概率,每名患者的潛伏期是否超過6天相互獨(dú)立.為了深入研究,該研究團(tuán)隊(duì)隨機(jī)調(diào)查了20名患者,其中潛伏期超過6天的人數(shù)最有可能(即概率最大)是多少?

附:下面的臨界值表僅供參考.

0.05

0.025

0.010

3.841

5.024

6.635

(參考公式:,其中.)

查看答案和解析>>

同步練習(xí)冊(cè)答案