【題目】已知圓,圓,如圖,C1,C2分別交x軸正半軸于點E,A.射線OD分別交C1,C2于點B,D,動點P滿足直線BP與y軸垂直,直線DP與x軸垂直.
(1)求動點P的軌跡C的方程;
(2)過點E作直線l交曲線C與點M,N,射線OH⊥l與點H,且交曲線C于點Q.問:的值是否是定值?如果是定值,請求出該定值;如果不是定值,請說明理由.
【答案】(1);(2)為定值,且為.
【解析】
(1)設(shè),根據(jù)圓的方程求出的坐標(biāo),進而可得,,然后得出動點P的軌跡C的方程.
(2)設(shè)出直線l的方程為,聯(lián)立直線與橢圓的方程,利用韋達定理,結(jié)合弦長公式,轉(zhuǎn)化求解即可.
(1)設(shè),則,,
所以,,
所以動點的軌跡C的方程為.
(2)由(1)可知E為C的焦點,設(shè)直線l的方程為(斜率不為0時),
且設(shè)點M(x1,y1),N(x2,y2),由,
得,
所以,所以,
又射線OQ方程為y=﹣mx,代入橢圓C的方程得x2+2(my)2=4,
即,
又當(dāng)直線l的斜率為0時,也符合條件.
綜上,為定值,且為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓C與兩圓,中的一個內(nèi)切,另一個外切.
(1)求C的圓心軌跡L的方程;
(2)已知點,,且P為L上動點,求的最大值及此時點P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】輥子是客家傳統(tǒng)農(nóng)具,南方農(nóng)民犁開田地后,仍有大的土塊.農(nóng)人便用六片葉齒組成輥軸,兩側(cè)裝上木板,人跨開兩腳站立,既能掌握平衡,又能增加重量,讓牛拉動輥軸前進,壓碎土塊,以利于耕種.這六片葉齒又對應(yīng)著菩薩六度,即布施持戒忍辱精進禪定與般若.若甲乙每人依次有放回地從這六片葉齒中隨機取一片,則這兩人選的葉齒對應(yīng)的“度”相同的概率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點為橢圓:的右焦點,過的直線與橢圓交于、兩點,線段的中點為.
(1)求橢圓的方程;
(2)若直線、斜率的乘積為,兩直線,分別與橢圓交于、、、四點,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(其中為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若點在直線上,且,求直線的斜率;
(2)若,求曲線上的點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),以下關(guān)于的結(jié)論其中正確的結(jié)論是( )
①當(dāng)時,在上無零點;
②當(dāng)時,在上單調(diào)遞增;
③當(dāng)時,在上有無數(shù)個極值點;
④當(dāng)時,在上恒成立.
A.①④B.②③C.①②④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠的某種產(chǎn)品成箱包裝,每箱20件,每一箱產(chǎn)品在交付用戶時,用戶要對該箱中部分產(chǎn)品作檢驗.設(shè)每件產(chǎn)品為不合格品的概率都為,且各件產(chǎn)品是否合格相互獨立.
(1)記某一箱20件產(chǎn)品中恰有2件不合格品的概率為,取最大值時對應(yīng)的產(chǎn)品為不合格品概率為,求;
(2)現(xiàn)從某一箱產(chǎn)品中抽取3件產(chǎn)品進行檢驗,以(1)中確定的作為p的值,已知每件產(chǎn)品的檢驗費用為10元,若檢驗出不合格品,則工廠要對每件不合格品支付30元的賠償費用,檢驗費用與賠償費用的和記為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,①已知點,直線,動點P滿足到點Q的距離與到直線的距離之比為.②已知點是圓上一個動點,線段HG的垂直平分線交GE于P.③點分別在軸,y軸上運動,且,動點P滿足.
(1)在①,②,③這三個條件中任選一個,求動點P的軌跡C的方程;
(注:如果選擇多個條件分別解答,按第一個解答計分)
(2)設(shè)圓上任意一點A處的切線交軌跡C于M,N兩點,試判斷以MN為直徑的圓是否過定點?若過定點,求出該定點坐標(biāo).若不過定點,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com