【題目】已知函數(shù)

是函數(shù)的極值點(diǎn),求曲線在點(diǎn)處的切線方程;

若函數(shù)在區(qū)間上為單調(diào)遞減函數(shù),求實(shí)數(shù)a的取值范圍;

設(shè)m,n為正實(shí)數(shù),且,求證:

【答案】(1);(2);(3)見解析

【解析】

求出導(dǎo)函數(shù),得到函數(shù)的極值點(diǎn),解得,求出切線的斜率為,切點(diǎn)為,然后利用點(diǎn)斜式求解切線方程,利用函數(shù)在區(qū)間上為單調(diào)遞減函數(shù),得到在區(qū)間上恒成立,推出,設(shè),,利用基本不等式再求出函數(shù)的最大值,可得實(shí)數(shù)的取值范圍;利用分析法證明,要證,只需證,設(shè),,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性可得,從而可得結(jié)論

,./span>

是函數(shù)的極值點(diǎn),,解得

經(jīng)檢驗(yàn),當(dāng)時(shí),是函數(shù)的極小值點(diǎn),符合題意

此時(shí)切線的斜率為,切點(diǎn)為,

則所求切線的方程為

因?yàn)楹瘮?shù)在區(qū)間上為單調(diào)遞減函數(shù),

所以不等式在區(qū)間上恒成立

在區(qū)間上恒成立,

當(dāng)時(shí),由可得,

設(shè),,

當(dāng)且僅當(dāng)時(shí),即時(shí),,

又因?yàn)楹瘮?shù)在區(qū)間上為單調(diào)遞減,在區(qū)間上為單調(diào)遞增,

,,

所以當(dāng)時(shí),恒成立,

,也即

則所求實(shí)數(shù)a的取值范圍是

n為正實(shí)數(shù),且要證,只需證

即證只需證

設(shè)

上恒成立,

即函數(shù)上是單調(diào)遞增,

,,即成立,

也即成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,霧霾日趨嚴(yán)重,霧霾的工作、生活受到了嚴(yán)重的影響,如何改善空氣質(zhì)量已成為當(dāng)今的熱點(diǎn)問題,某空氣凈化器制造廠,決定投入生產(chǎn)某型號(hào)的空氣凈化器,根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律,每生產(chǎn)該型號(hào)空氣凈化器(百臺(tái)),其總成本為(萬元),其中固定成本為12萬元,并且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為10萬元(總成本=固定成本+生產(chǎn)成本),銷售收入(萬元)滿足,假定該產(chǎn)品銷售平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問題:

(1)求利潤函數(shù)的解析式(利潤=銷售收入-總成本);

(2)工廠生產(chǎn)多少百臺(tái)產(chǎn)品時(shí),可使利潤最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象過點(diǎn)(1,13),且函數(shù)對(duì)稱軸方程為.

(1)求函數(shù)的解析式;

(2)設(shè)函數(shù),求在區(qū)間上的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校團(tuán)委對(duì)“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計(jì)算得,參照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

得到正確結(jié)論是( )

A. 有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星無關(guān)”

B. 有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”

C. 在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星無關(guān)”

D. 在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為定義在上的偶函數(shù),,且當(dāng)時(shí),單調(diào)遞增,則不等式的解集為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京、張家口2022年冬奧會(huì)申辦委員會(huì)在俄羅斯索契舉辦了發(fā)布會(huì),某公司為了競(jìng)標(biāo)配套活動(dòng)的相關(guān)代言,決定對(duì)旗下的某商品進(jìn)行一次評(píng)估,該商品原來每件售價(jià)為25元,年銷售8萬件.

(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?

(2)為了抓住申奧契機(jī),擴(kuò)大該商品的影響力,提高年銷售量.公司決定立即對(duì)該商品進(jìn)行全面技術(shù)革新和營銷策略改革,并提高定價(jià)到元.公司擬投入萬作為技改費(fèi)用,投入50萬元作為固定宣傳費(fèi)用,投入萬元作為浮動(dòng)宣傳費(fèi)用.試問:當(dāng)該商品改革后的銷售量至少應(yīng)達(dá)到多少萬件時(shí),才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)銷商小王對(duì)其所經(jīng)營的某一型號(hào)二手汽車的使用年數(shù)(0<≤10)與銷售價(jià)格(單位:萬元/輛)進(jìn)行整理,得到如下的對(duì)應(yīng)數(shù)據(jù):

使用年數(shù)

2

4

6

8

10

售價(jià)

16

13

9.5

7

4.5

(Ⅰ)試求關(guān)于的回歸直線方程;

(附:回歸方程,

(Ⅱ)已知每輛該型號(hào)汽車的收購價(jià)格為萬元,根據(jù)(Ⅰ)中所求的回歸方程,

預(yù)測(cè)為何值時(shí),小王銷售一輛該型號(hào)汽車所獲得的利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,均是邊長(zhǎng)為2的等邊三角形,點(diǎn)中點(diǎn),平面平面.

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形EFGH為空間四邊形ABCD的一個(gè)截面,若截面為平行四邊形.

(1)求證:AB∥平面EFGH

(2)AB4,CD6,求四邊形EFGH周長(zhǎng)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案