【題目】如圖,三棱柱中,,.

1)求證:平面平面;

2)若,直線與平面所成角為45°,的中點(diǎn),求二面角的余弦值.

【答案】1)證明見解析;(2

【解析】

(1)首先過點(diǎn),垂足為,根據(jù)得到平面,從而得到.又因為得到,,從而得到平面,由此即證平面平面.

(2)首先以為坐標(biāo)原點(diǎn),,,所在直線為,,軸,建立空間直角坐標(biāo)系,根據(jù)直線與平面所成角為得到,再利用向量法求二面角的余弦值即可.

1

過點(diǎn),垂足為.

因為,于點(diǎn)

所以平面.

又因為平面,故.

因為,

所以為等腰直角三角形,則.

又因為,

所以,故,

.

因為,平面,所以平面.

又因為平面,故平面⊥平面.

2)由(1)知平面.

為坐標(biāo)原點(diǎn),,所在直線為,軸,

建立空間直角坐標(biāo)系.

因為直線與平面成角為45°,而,

所以直線與平面成角為,

是直線與平面所成角,故.

所以,,,,,

,

設(shè)平面的法向量為

,令,得.

因為平面,所以為平面的一條法向量,.

所以,

二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正四棱錐中,是邊長為3的等邊三角形,點(diǎn)M的重心,過點(diǎn)M作與平面PAC垂直的平面,平面與截面PAC交線段的長度為2,則平面與正四棱椎表面交線所圍成的封閉圖形的面積可能為______________.(請將可能的結(jié)果序號填到橫線上)①2;②;③3; ④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學(xué)家和數(shù)學(xué)愛好者,有些猜想已經(jīng)被數(shù)學(xué)家證明,如“費(fèi)馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對于每一個正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,內(nèi)角A,B,C的對邊分別為a,b,c,且.

1)若,請判斷的形狀;

2)若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知、分別為橢圓的左、右焦點(diǎn),直線過點(diǎn)且垂直于橢圓的長軸,動直線垂直于直線于點(diǎn),線段的中垂線交于點(diǎn).記點(diǎn)的軌跡為曲線.

1)求曲線的方程,并說明是什么曲線;

2)若直線與曲線交于兩點(diǎn),則在圓上是否存在兩點(diǎn)、,使得,?若存在,請求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列結(jié)論:

①下面程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的,分別為8,12,則輸出的;

②若用樣本數(shù)據(jù)0,-1,23來估計總體的標(biāo)準(zhǔn)差,則總體的標(biāo)準(zhǔn)差估計值為

③命題:,則的否命題是,則

④已知正數(shù),滿足,則的最大值是;

⑤已知函數(shù)滿足,,且當(dāng)時,.在區(qū)間為增函數(shù).

其中結(jié)論正確的序號是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)興趣小組為了測量校園外一座不可到達(dá)建筑物的高度,采用兩次測角法,并自制了測量工具:將一個量角器放在復(fù)印機(jī)上放大4倍復(fù)印,在中心處綁上一個鉛錘,用于測量樓頂仰角(如圖);推動自行車來測距(輪子滾動一周為1.753米).該小組在操場上選定A點(diǎn),此時測量視線和鉛錘線之間的夾角在量角器上度數(shù)為37°;推動自行車直線后退,輪子滾動了10卷達(dá)到B點(diǎn),此時測量視線和鉛錘線之間的夾角在量角器上度數(shù)為53°.測量者站立時的眼高1.55m,根據(jù)以上數(shù)據(jù)可計算得該建筑物的高度約為___________.(精確到0.1

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,側(cè)棱底面,,點(diǎn)的中點(diǎn).

求證:平面

若直線與平面所成角為,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠加工的零件按箱出廠,每箱有10個零件,在出廠之前需要對每箱的零件作檢驗,人工檢驗方法如下:先從每箱的零件中隨機(jī)抽取4個零件,若抽取的零件都是正品或都是次品,則停止檢驗;若抽取的零件至少有1個至多有3個次品,則對剩下的6個零件逐一檢驗.已知每個零件檢驗合格的概率為0.8,每個零件是否檢驗合格相互獨(dú)立,且每個零件的人工檢驗費(fèi)為2.

1)設(shè)1箱零件人工檢驗總費(fèi)用為元,求的分布列;

2)除了人工檢驗方法外還有機(jī)器檢驗方法,機(jī)器檢驗需要對每箱的每個零件作檢驗,每個零件的檢驗費(fèi)為1.6.現(xiàn)有1000箱零件需要檢驗,以檢驗總費(fèi)用的數(shù)學(xué)期望為依據(jù),在人工檢驗與機(jī)器檢驗中,應(yīng)該選擇哪一個?說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案