【題目】已知函數(shù)(為常數(shù))
(1)若,討論的單調(diào)性;
(2)若對任意的,都存在使得不等式成立,求實數(shù)的取值范圍.
【答案】(1)見解析;(2).
【解析】試題分析:(1)求導(dǎo)得,分, 和 三種情況得單調(diào)區(qū)間.
(2)依題意,只需,由(1)當(dāng)時, 在上單調(diào)遞增, ,
轉(zhuǎn)化為對任意的,不等式恒成立,構(gòu)造新函數(shù),對討論求最值即可.
試題解析:(1)
令得
①當(dāng)時, ,當(dāng)時, ;當(dāng)或時, ,此時的單調(diào)遞增區(qū)間為, ,單調(diào)遞減區(qū)間為;
②當(dāng)時, , , 在上單調(diào)遞增;
③當(dāng)時, ,當(dāng)時, ;當(dāng)或時, ,此時的單調(diào)遞增區(qū)間為, ,單調(diào)遞減區(qū)間為
綜上所述,當(dāng)時, 的單調(diào)遞增區(qū)間為, ,單調(diào)遞減區(qū)間為;當(dāng)時, 的單調(diào)遞增區(qū)間為;當(dāng)時, 的單調(diào)遞增區(qū)間為, ,單調(diào)遞減區(qū)間為.
(2)由(1)可知,當(dāng)時, 在上單調(diào)遞增,
∴時, ,依題意,只需
即對任意的,不等式恒成立,
設(shè),則,
∵,∴
①當(dāng)時,對任意的, ,∴
∴在上單調(diào)遞增, 恒成立;
②當(dāng)時,存在使得當(dāng)時, ,∴,∴單調(diào)遞減,
∴,∴時, 不能恒成立
綜上所述,實數(shù)的取值范圍是.
點晴:本題主要考查函數(shù)單調(diào)性,不等式恒成立問題.求導(dǎo)比較導(dǎo)方程的根的大小,解不等式可得單調(diào)區(qū)間,要證明不等式恒成立問題可轉(zhuǎn)化為構(gòu)造新函數(shù)證明新函數(shù)單調(diào),只需要證明其導(dǎo)函數(shù)大于等于0(或者恒小于等于0即可),要證明一個不等式,我們可以先根據(jù)題意構(gòu)造新函數(shù),求其值最值即可.這類問題的通解方法就是:劃歸與轉(zhuǎn)化之后,就可以假設(shè)相對應(yīng)的函數(shù),然后利用導(dǎo)數(shù)研究這個函數(shù)的單調(diào)性、極值和最值,圖像與性質(zhì),進而求解得結(jié)果.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x2﹣2ax)(a>0且a≠1)滿足對任意的x1 , x2∈[3,4],且x1≠x2時,都有 >0成立,則實數(shù)a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , n∈N* , 已知a1=1,a2= ,a3= ,且當(dāng)n≥2時,4Sn+2+5Sn=8Sn+1+Sn﹣1 .
(1)求a4的值.
(2)證明:{an﹣1﹣ an}為等比數(shù)列;
(3)求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幾何體的主視圖和左視圖如圖(1),它的俯視圖的直觀圖是矩形O1A1B1C1如圖(2),其中O1A1=6,O1C1=2,則該幾何體的側(cè)面積為( )
A.48
B.64
C.96
D.128
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在區(qū)間D上的函數(shù)y=f(x)滿足:對x∈D,M∈R,使得|f(x)|≤M恒成立,則稱函數(shù)y=f(x)在區(qū)間D上有界.則下列函數(shù)中有界的是: .
①y=sinx;② ;③y=tanx;④ ;
⑤y=x3+ax2+bx+1(﹣4≤x≤4),其中a,b∈R.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x+b經(jīng)過定點(2,8)
(1)求實數(shù)b的值;
(2)求不等式f(x)> 的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x,y的方程C:x2+y2﹣2x﹣4y+m=0.
(1)當(dāng)m為何值時,方程C表示圓.
(2)若圓C與直線l:x+2y﹣4=0相交于M,N兩點,且MN= ,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,四個頂點構(gòu)成的菱形的面積是4,圓過橢圓的上頂點作圓的兩條切線分別與橢圓相交于兩點(不同于點),直線的斜率分別為.
(1)求橢圓的方程;
(2)當(dāng)變化時,①求的值;②試問直線是否過某個定點?若是,求出該定點;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com