【題目】在三棱柱ABC﹣A1B1C1中,已知側(cè)面ABB1A1是菱形,側(cè)面BCC1B1是正方形,點(diǎn)A1在底面ABC的投影為AB的中點(diǎn)D.
(1)證明:平面AA1B1B⊥平面BB1C1C;
(2)設(shè)P為B1C1上一點(diǎn),且 ,求二面角A1﹣AB﹣P的正弦值.

【答案】
(1)證明:∵點(diǎn)A1在底面ABC的投影為AB的中點(diǎn)D,

∴A1D⊥平面ABC,則A1D⊥BC,

又∵側(cè)面BCC1B1是正方形,∴B1B⊥BC,

∵B1B與A1D在平面ABB1A1上不平行,

∴BC⊥平面ABB1A1,

∴平面AA1B1B⊥平面BB1C1C


(2)解:如圖所示,以點(diǎn)D為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,

不妨設(shè)菱形邊長(zhǎng)為2,得D(0,0,0),A(0,﹣1,0),B(0,1,0),

∵D為AB的中點(diǎn),且有A1D⊥AB,∴AA1=A1B,

又∵平面ABB1A1為菱形,∴△A1AB為等邊三角形,

從而 ,從而 ,

∴點(diǎn)A1的坐標(biāo)為

,∴ ,

又∵ ,∴ ,

設(shè)平面ABP的法向量為 ,

,

,即 ,

,則 ,y=0,∴ ,

同理求得平面ABB1A1的法向量 ,

,

,

從而二面角A1﹣AB﹣P的正弦值為


【解析】(1)由點(diǎn)A1在底面ABC的投影為AB的中點(diǎn)D,可得A1D⊥平面ABC,則A1D⊥BC,再由已知可得B1B⊥BC,由線面垂直的判定可得BC⊥平面ABB1A1 , 從而得到平面AA1B1B⊥平面BB1C1C;(2)以點(diǎn)D為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,設(shè)菱形邊長(zhǎng)為2,得到對(duì)應(yīng)點(diǎn)的坐標(biāo),求出平面ABP與平面ABB1A1的法向量,由兩法向量所成角的余弦值求得二面角A1﹣AB﹣P的正弦值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平面與平面垂直的判定的相關(guān)知識(shí)可以得到問題的答案,需要掌握一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某手機(jī)廠商推出一款6吋大屏手機(jī),現(xiàn)對(duì)500名該手機(jī)用戶(200名女性,300名男性)進(jìn)行調(diào)查,對(duì)手機(jī)進(jìn)行評(píng)分,評(píng)分的頻數(shù)分布表如下:

女性用戶

分值區(qū)間

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

頻數(shù)

20

40

80

50

10

男性用戶

分值區(qū)間

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

頻數(shù)

45

75

90

60

30

(Ⅰ)完成下列頻率分布直方圖,并指出女性用戶和男性用戶哪組評(píng)分更穩(wěn)定(不計(jì)算具體值,給出結(jié)論即可);

(Ⅱ)根據(jù)評(píng)分的不同,運(yùn)用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評(píng)分不低于80分的用戶中任意抽取3名用戶,求3名用戶中評(píng)分小于90分的人數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|+2|x+b|(a>0,b>0)的最小值為1.
(1)求a+b的值;
(2)若 恒成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:

則下面結(jié)論中不正確的是

A. 新農(nóng)村建設(shè)后,種植收入減少

B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上

C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍

D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公比不為1的等比數(shù)列{an}的前5項(xiàng)積為243,且2a3為3a2和a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)若數(shù)列{bn}滿足bn=bn1log3an+2(n≥2且n∈N*),且b1=1,求數(shù)列 的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為自然對(duì)數(shù)的底數(shù),).

(1)判斷曲線在點(diǎn)處的切線與曲線的公共點(diǎn)個(gè)數(shù);

(2)當(dāng)時(shí),若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1 (參數(shù)θ∈R),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為 ,點(diǎn)Q的極坐標(biāo)為
(1)將曲線C2的極坐標(biāo)方程化為直角坐標(biāo)方程,并求出點(diǎn)Q的直角坐標(biāo);
(2)設(shè)P為曲線C1上的點(diǎn),求PQ中點(diǎn)M到曲線C2上的點(diǎn)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家電專賣店試銷A、B、C三種新型空調(diào),連續(xù)五周銷售情況如表所示:

第一周 第二周 第三周 第四周 第五周

A型數(shù)量/臺(tái) 12 8 15 22 18

B型數(shù)量/臺(tái) 7 12 10 10 12

C型數(shù)量/臺(tái)

(I)求A型空調(diào)平均每周的銷售數(shù)量;

(Ⅱ)為跟蹤調(diào)查空調(diào)的使用情況,從該家電專賣店第二周售出的A、B型空調(diào)銷售記錄中,隨機(jī)抽取一臺(tái),求抽到B型空調(diào)的概率;

(III)已知C型空調(diào)連續(xù)五周銷量的平均數(shù)為7,方差為4,且每周銷售數(shù)量互不相同,求C型空調(diào)這五周中的最大銷售數(shù)量。(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)的兩個(gè)焦點(diǎn)為F1 , F2 , 離心率為 ,點(diǎn)A,B在橢圓上,F(xiàn)1在線段AB上,且△ABF2的周長(zhǎng)等于4
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過圓O:x2+y2=4上任意一點(diǎn)P作橢圓C的兩條切線PM和PN與圓O交于點(diǎn)M,N,求△PMN面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案