【題目】設(shè)數(shù)列{an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,已知S3=7,且a1+3,3a2 , a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an+log2an}(n∈N*)的前10項(xiàng)和T10 .
【答案】
(1)解:由題意可得: ,∴14﹣a2=6a2,解得a2=2,
∴ =14,又q>1,解得q=2,a1=1,
∴ .
(2)解: ,
∴an+log2an=2n﹣1+n﹣1.
,
∴ .
【解析】(1)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出.(2)利用等差數(shù)列與等比數(shù)列的求和公式即可得出.
【考點(diǎn)精析】利用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式對(duì)題目進(jìn)行判斷即可得到答案,需要熟知數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=xex , g(x)=﹣(x+1)2+a,若x1 , x2∈R,使得f(x2)≤g(x1)成立,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中, 平面, 分別為和的中點(diǎn), 是邊長(zhǎng)為2 的正三角形, .
(1)證明: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將正方形ABCD沿對(duì)角線BD折成直二面角A﹣BD﹣C,有如下四個(gè)結(jié)論:
①AC⊥BD;
②△ACD是等邊三角形;
③AB與平面BCD成60°的角;
④AB與CD所成的角為60°;
其中正確結(jié)論是(寫出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為,曲線的極坐標(biāo)方程為.
(1)寫出直線的直角坐標(biāo)方程和曲線的普通方程;
(2)求直線與曲線的交點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.
(Ⅰ)求實(shí)數(shù), 的值;
(Ⅱ)若, , , ,試判斷, , 三者是否有確定的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b為正實(shí)數(shù),且 ,若a+b﹣c≥0對(duì)于滿足條件的a,b恒成立,則c的取值范圍為( )
A.
B.(﹣∞,3]
C.(﹣∞,6]
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
寫出曲線的極坐標(biāo)的方程以及曲線的直角坐標(biāo)方程;
若過點(diǎn)(極坐標(biāo))且傾斜角為的直線與曲線交于, 兩點(diǎn),弦的中點(diǎn)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化妝品生產(chǎn)企業(yè)為了占有更多的市場(chǎng)份額,擬在2010年世博會(huì)期間進(jìn)行一系列促銷活動(dòng),經(jīng)過市場(chǎng)調(diào)查和測(cè)算,化妝品的年銷量x萬件與年促銷費(fèi)t萬元之間滿足3﹣x與t+1成反比例,如果不搞促銷活動(dòng),化妝品的年銷量只能是1萬件,已知2010年生產(chǎn)化妝品的設(shè)備折舊、維修等固定費(fèi)用為3萬元,每生產(chǎn)1萬件化妝品需要再投入32萬元的生產(chǎn)費(fèi)用,若將每件化妝品的售價(jià)定為:其生產(chǎn)成本的150%與平均每件促銷費(fèi)的一半之和,則當(dāng)年生產(chǎn)的化妝品正好能銷完.
(1)將2010年利潤(rùn)y(萬元)表示為促銷費(fèi)t(萬元)的函數(shù);
(2)該企業(yè)2010年的促銷費(fèi)投入多少萬元時(shí),企業(yè)的年利潤(rùn)最大?
(注:利潤(rùn)=銷售收入﹣生產(chǎn)成本﹣促銷費(fèi),生產(chǎn)成本=固定費(fèi)用+生產(chǎn)費(fèi)用)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com