【題目】在棱長(zhǎng)為1的正方體中,點(diǎn)是對(duì)角線上的動(dòng)點(diǎn)(點(diǎn)與不重合),則下列結(jié)論正確的是____.
①存在點(diǎn),使得平面平面;
②存在點(diǎn),使得平面;
③的面積不可能等于;
④若分別是在平面與平面的正投影的面積,則存在點(diǎn),使得.
【答案】①②④
【解析】
逐項(xiàng)分析.
①如圖
當(dāng)是中點(diǎn)時(shí),可知也是中點(diǎn)且,,,所以平面,所以,同理可知,且,所以平面,又平面,所以平面平面,故正確;
②如圖
取靠近的一個(gè)三等分點(diǎn)記為,記,,因?yàn)?/span>,所以,所以為靠近的一個(gè)三等分點(diǎn),則為中點(diǎn),又為中點(diǎn),所以,且,,,所以平面平面,且平面,所以平面,故正確;
③如圖
作,在中根據(jù)等面積得:,根據(jù)對(duì)稱(chēng)性可知:,又,所以是等腰三角形,則,故錯(cuò)誤;
④如圖
設(shè),在平面內(nèi)的正投影為,在平面內(nèi)的正投影為,所以,,當(dāng)時(shí),解得:,故正確.
故填:①②④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知以坐標(biāo)原點(diǎn)為圓心的圓與拋物線相交于不同的兩點(diǎn), ,與拋物線的準(zhǔn)線相交于不同的兩點(diǎn), ,且.
(1)求拋物線的方程;
(2)若不經(jīng)過(guò)坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿(mǎn)足.證明直線過(guò)定點(diǎn),并求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題α:函數(shù)的定義域是R;命題β:在R上定義運(yùn)算:xy=x(1-y).不等式(x-a)(x+a)<1對(duì)任意實(shí)數(shù)x都成立.
(1)若α、β中有且只有一個(gè)真命題,求實(shí)數(shù)a的取值范圍;
(2)若α、β中至少有一個(gè)真命題,求實(shí)數(shù)a的取值范圍;
(3)若α、β中至多有一個(gè)真命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高中非畢業(yè)班學(xué)生人數(shù)分布情況如下表,為了了解這2000個(gè)學(xué)生的體重情況,從中隨機(jī)抽取160個(gè)學(xué)生并測(cè)量其體重?cái)?shù)據(jù),根據(jù)測(cè)量數(shù)據(jù)制作了下圖所示的頻率分布直方圖.
(1)為了使抽取的160個(gè)樣品更具代表性,宜采取分層抽樣,請(qǐng)你給出一個(gè)你認(rèn)為合適的分層抽樣方案,并確定每層應(yīng)抽取的樣品個(gè)數(shù);
(2)根據(jù)頻率分布直方圖,求的值,并估計(jì)全體非畢業(yè)班學(xué)生中體重在內(nèi)的人數(shù);
(3)已知高一全體學(xué)生的平均體重為,高二全體學(xué)生的平均體重為,試估計(jì)全體非畢業(yè)班學(xué)生的平均體重.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,側(cè)面是等邊三角形且垂直于底面,底面是矩形,,是的中點(diǎn).
(1)證明:平面;
(2)點(diǎn)在棱上,且直線與直線所成角的余弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)對(duì)一種新品種小麥在一塊試驗(yàn)田進(jìn)行試種.從試驗(yàn)田中抽取株小麥,測(cè)量這些小麥的生長(zhǎng)指標(biāo)值,由測(cè)量結(jié)果得如下頻數(shù)分布表:
生長(zhǎng)指標(biāo)值分組 | |||||||
頻數(shù) |
(1)在相應(yīng)位置上作出這些數(shù)據(jù)的頻率分布直方圖;
(2)求這株小麥生長(zhǎng)指標(biāo)值的樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)由直方圖可以認(rèn)為,這種小麥的生長(zhǎng)指標(biāo)值服從正態(tài)分布,其中近似為樣本平均數(shù), 近似為樣本方差.
①利用該正態(tài)分布,求;
②若從試驗(yàn)田中抽取株小麥,記表示這株小麥中生長(zhǎng)指標(biāo)值位于區(qū)間的小麥株數(shù),利用①的結(jié)果,求.
附: .
若,則,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB=2a,F(xiàn)為CD的中點(diǎn).
(1)求證:AF∥平面BCE;
(2)判斷平面BCE與平面CDE的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若f (x)在區(qū)間(-∞,2)上為單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若a=0,x0<1,設(shè)直線y=g(x)為函數(shù)f (x)的圖象在x=x0處的切線,求證:f (x)≤g(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè), 滿(mǎn)足約束條件,則的最大值為_______.
【答案】4
【解析】,畫(huà)出可行域如下圖所示,由圖可知,目標(biāo)函數(shù)在點(diǎn)處取得最大值為.
[點(diǎn)睛]本小題主要考查線性規(guī)劃的基本問(wèn)題,考查了指數(shù)的運(yùn)算. 畫(huà)二元一次不等式或表示的平面區(qū)域的基本步驟:①畫(huà)出直線(有等號(hào)畫(huà)實(shí)線,無(wú)等號(hào)畫(huà)虛線);②當(dāng)時(shí),取原點(diǎn)作為特殊點(diǎn),判斷原點(diǎn)所在的平面區(qū)域;當(dāng)時(shí),另取一特殊點(diǎn)判斷;③確定要畫(huà)不等式所表示的平面區(qū)域.
【題型】填空題
【結(jié)束】
14
【題目】已知數(shù)列的前項(xiàng)和公式為,若,則數(shù)列的前項(xiàng)和__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com