【題目】如圖,在等腰梯形ABCD中,AB∥CD,且AB=2AD,設(shè)∠DAB=θ,θ∈(0, ),以A,B為焦點且過點D的雙曲線的離心率為e1 , 以C,D為焦點且過點A的橢圓的離心率為e2 , 則(
A.隨著角度θ的增大,e1增大,e1e2為定值
B.隨著角度θ的增大,e1減小,e1e2為定值
C.隨著角度θ的增大,e1增大,e1e2也增大
D.隨著角度θ的增大,e1減小,e1e2也減小

【答案】B
【解析】解:連接BD,AC 設(shè)AD=t,
則BD= =
∴雙曲線中a=
e1=
∵y=cosθ在(0, )上單調(diào)減,進而可知當θ增大時,y= = 減小,即e1減小
∵AC=BD
∴橢圓中CD=2t(1﹣cosθ)=2c∴c'=t(1﹣cosθ)
AC+AD= +t,∴a'= +t)
e2= =
∴e1e2= × =1
故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市計劃銷售某種產(chǎn)品,先試銷該產(chǎn)品天,對這天日銷售量進行統(tǒng)計,得到頻率分布直方圖如圖.

(Ⅰ)若已知銷售量低于50的天數(shù)為23,求

(Ⅱ)廠家對該超市銷售這種產(chǎn)品的日返利方案為:每天固定返利45元,另外每銷售一件產(chǎn)品,返利3元;頻率估計為概率.依此方案,估計日返利額的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣(a+1)x+1(a∈R)
(1)若關(guān)于x的不等式f(x)>0的解集為R,求實數(shù)a的取值范圍;
(2)若關(guān)于x的不等式f(x)≤0的解集為P,集合Q={x|0≤x≤1},若P∩Q=,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點A(﹣1,2),B(m,3).且實數(shù)m∈[﹣ ﹣1, ﹣1],求直線AB的傾斜角α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,已知AB⊥側(cè)面BB1C1C,CB⊥C1B,BC=1,CC1=2,A1B1= ,
(1)試在棱CC1(不包含端點C,C1)上確定一點E的位置,使得EA⊥EB1;
(2)在(1)的條件下,求AE和BC1所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知直線(其中為參數(shù), 為傾斜角).以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求的直角坐標方程,并求的焦點的直角坐標;

(2)已知點,若直線相交于兩點,且,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=lg(ax﹣1)﹣lg(x﹣1)在區(qū)間[2,+∞)上是增函數(shù),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點

(1)求E的方程;

2)若直線E相交于兩點,且為坐標原點)的斜率之和為2,求點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知離心率為 的橢圓 過點M(2,1),O為坐標原點,平行于OM的直線i交橢圓C于不同的兩點A、B.
(1)求橢圓C的方程;
(2)記直線MB、MA與x軸的交點分別為P、Q,若MP斜率為k1 , MQ斜率為k2 , 求k1+k2

查看答案和解析>>

同步練習(xí)冊答案