【題目】設(shè)min{m,n}表示m、n二者中較小的一個,已知函數(shù)f(x)=x2+8x+14,g(x)=min{( )x﹣2 , log2(4x)}(x>0),若x1∈[﹣5,a](a≥﹣4),x2∈(0,+∞),使得f(x1)=g(x2)成立,則a的最大值為( )
A.﹣4
B.﹣3
C.﹣2
D.0
【答案】C
【解析】解:當(dāng)( )x﹣2=log2(4x),解得x=1, 當(dāng)0<x≤1時,( )x﹣2≥log2(4x),
當(dāng)x>1時,( )x﹣2<log2(4x),
∴g(x)=min{( )x﹣2 , log2(4x)}(x>0)= ,
∴當(dāng)0<x≤1時,g(x)的值域為(﹣∞,2],當(dāng)x>1時,g(x)值域為(0,2),
∴g(x)的值域為(﹣∞,2]
∵f(x)=x2+8x+14=(x+4)2﹣2,其對稱軸為x=﹣4,
∴f(x)在[﹣5,﹣4]上為減函數(shù),在(﹣4,a]上為增函數(shù),
∵f(﹣5)=﹣1,f(a)=a2+8a+14
當(dāng)﹣4≤a≤﹣3時,函數(shù)f(x)的值域為[﹣2,﹣1],
當(dāng)a>﹣3時,函數(shù)f(x)的值域為[﹣2,a2+8a+14],
∵x1∈[﹣5,a](a≥﹣4),x2∈(0,+∞),使得f(x1)=g(x2)成立,
∴a2+8a+14≤2,
解得﹣3<a≤﹣2,
綜上所述a的范圍為[﹣4,﹣2],
∴a的最大值為﹣2,
故選:C
【考點精析】本題主要考查了函數(shù)的最值及其幾何意義的相關(guān)知識點,需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲挡拍苷_解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若無窮數(shù)列{an}滿足:k∈N* , 對于 ,都有an+k﹣an=d(其中d為常數(shù)),則稱{an}具有性質(zhì)“P(k,n0 , d)”. (Ⅰ)若{an}具有性質(zhì)“P(3,2,0)”,且a2=3,a4=5,a6+a7+a8=18,求a3;
(Ⅱ)若無窮數(shù)列{bn}是等差數(shù)列,無窮數(shù)列{cn}是公比為正數(shù)的等比數(shù)列,b1=c3=2,b3=c1=8,an=bn+cn , 判斷{an}是否具有性質(zhì)“P(2,1,0)”,并說明理由;
(Ⅲ)設(shè){an}既具有性質(zhì)“P(i,2,d1)”,又具有性質(zhì)“P(j,2,d2)”,其中i,j∈N* , i<j,i,j互質(zhì),求證:{an}具有性質(zhì)“ ”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x,y∈R,m+n=7,f(x)=|x﹣1|﹣|x+1|.
(1)解不等式f(x)≥(m+n)x;
(2)設(shè)max{a,b}= ,求F=max{|x2﹣4y+m|,|y2﹣2x+n|}的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在我國古代數(shù)學(xué)名著《九章算術(shù)》中,將四個面都為直角三角形的四面體稱為鱉臑,如圖,在鱉臑ABCD中,AB⊥平面BCD,且AB=BC=CD,則異面直線AC與BD所成角的余弦值為( )
A.
B.﹣
C.
D.﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】幾個月前,成都街頭開始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題,然而,這種模式也遇到了一些讓人尷尬的問題,比如亂停亂放,或?qū)⒐蚕韱诬囌紴椤八接小钡龋?為此,某機構(gòu)就是否支持發(fā)展共享單車隨機調(diào)查了50人,他們年齡的分布及支持發(fā)展共享單車的人數(shù)統(tǒng)計如表:
年齡 | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) | [40,45) |
受訪人數(shù) | 5 | 6 | 15 | 9 | 10 | 5 |
支持發(fā)展 | 4 | 5 | 12 | 9 | 7 | 3 |
(1)由以上統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.1的前提下,認(rèn)為年齡與是否支持發(fā)展共享單車有關(guān)系;
年齡低于35歲 | 年齡不低于35歲 | 合計 | |
支持 | |||
不支持 | |||
合計 |
(2)若對年齡在[15,20)[20,25)的被調(diào)查人中隨機選取兩人進行調(diào)查,記選中的4人中支持發(fā)展共享單車的人數(shù)為X,求隨機變量X的分布列及數(shù)學(xué)期望. 參考數(shù)據(jù):
P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:K2= ,其中n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1=1, = + (n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=1+a (n∈N*),求數(shù)列{2nbn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解一片經(jīng)濟林的生長情況,隨機抽測了其中60株樹木的底部周長(單位:cm),所得數(shù)據(jù)均在區(qū)間[80,130]上,其頻率分布直方圖如圖所示,則在抽測的60株樹木中,有株樹木的底部周長小于110cm.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣mex(m∈R,e為自然對數(shù)的底數(shù))
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)≤e2x對x∈R恒成立,求實數(shù)m的取值范圍;
(3)設(shè)x1 , x2(x1≠x2)是函數(shù)f(x)的兩個兩點,求證x1+x2>2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m,n為兩條不同的直線,α,β為兩個不同的平面,則下列命題中正確的是( )
A.mα,nα,m∥β,n∥βα∥β
B.α∥β,mα,nβ,m∥n
C.m⊥α,m⊥nn∥α
D.m∥n,n⊥αm⊥α
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com