班主任為了對本班學生的考試成績進行分析,決定從全班25位女同學,15位男同學中隨機抽取一個容量為8的樣本進行分析.
(1)如果按性別比例分層抽樣,可以得到多少個不同的樣本(只要求寫出算式即可,不必計算出結果);
(2)隨機抽取8位同學,
數(shù)學分數(shù)依次為:60,65,70,75,80,85,90,95;
物理成績依次為:72,77,80,84,88,90,93,95,
①若規(guī)定90分(含90分)以上為優(yōu)秀,記ξ為這8位同學中數(shù)學和物理分數(shù)均為優(yōu)秀的人數(shù),求ξ的分布列和數(shù)學期望;
②若這8位同學的數(shù)學、物理分數(shù)事實上對應下表:
學生編號 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
數(shù)學分數(shù)x |
60 |
65 |
70 |
75 |
80 |
85 |
90 |
95 |
物理分數(shù)y |
72 |
77 |
80 |
84 |
88 |
90 |
93 |
95 |
根據(jù)上表數(shù)據(jù)可知,變量y與x之間具有較強的線性相關關系,求出y與x的線性回歸方程(系數(shù)精確到0.01).(參考公式:
=bx+a,其中
b=n | | i=1 | (xi-)(yi-) |
n | | i=1 | (xi-)2 |
,
a=-b;參考數(shù)據(jù):
=77.5,
=84.875,
8 |
|
i=1 |
(xi-)2≈1050,
8 |
|
i=1 |
(xi-)(yi-)≈688,
≈32.4,
≈21.4,
≈23.5)