精英家教網 > 高中數學 > 題目詳情

【題目】已知f(x)= ,若函數y=f(x)﹣kx恒有一個零點,則k的取值范圍為(
A.k≤0
B.k≤0或k≥1
C.k≤0或k≥e
D.k≤0或k≥

【答案】B
【解析】解:由y=f(x)﹣kx=0得f(x)=kx,
作出函數f(x)和y=kx的圖象如圖,
由圖象知當k≤0時,函數f(x)和y=kx恒有一個交點,
當x≥0時,函數f(x)=ln(x+1)的導數f′(x)= ,則f′(0)=1,
當x<0時,函數f(x)=ex﹣1的導數f′(x)=ex , 則f′(0)=e0=1,
即當k=1時,y=x是函數f(x)的切線,
則當0<k<1時,函數f(x)和y=kx有3個交點,不滿足條件.
當k≥1時,函數f(x)和y=kx有1個交點,滿足條件.
綜上k的取值范圍為k≤0或k≥1,
故選:B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】甲、乙兩個班級共有105名學生,某次數學考試按照“大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀”的原則統(tǒng)計成績后,得到如下列聯表。

優(yōu)秀

非優(yōu)秀

總計

甲班

10

乙班

30

總計

105

已知從甲、乙兩個班級中隨機抽取1名學生,其成績?yōu)閮?yōu)秀的概率為.

(1)請完成上面的列聯表;

(2)能否有把握認為成績與班級有關系?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】△ABC的內角A,B,C所對的邊分別為a,b,c,已知4sin2
(1)求角C的大小;
(2)若c= ,求a﹣b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(附加題,本小題滿分10分,該題計入總分)

已知函數,若在區(qū)間內有且僅有一個,使得成立,則稱函數具有性質

(1)若,判斷是否具有性質,說明理由;

(2)若函數具有性質,試求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)求的最小正周期;

(2)設,若上的值域為,求實數的值;

(3)若對任意的恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,正方體的棱長為1,線段上有兩個動點,則下列結論中正確的是__________

平面;

②平面平面;

③三棱錐的體積為定值

④存在某個位置使得異面直線成角.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右焦點為,點在橢圓上.

(1)求橢圓的標準方程;

(2)是否存在斜率為的直線與橢圓相交于兩點,使得 是橢圓的左焦點?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線C經過點(3,6)且焦點在x軸上.

(1)求拋物線C的標準方程;

(2)直線l 過拋物線C的焦點F且與拋物線C交于A,B兩點,求A,B兩點間的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求函數在區(qū)間上的最大值和最小值;

(2)若上是單調函數,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案