【題目】在如圖所示的棱長為1的正方體中,點P在側(cè)面所在的平面上運動,則下列命題中正確的(

A.若點P總滿足,則動點P的軌跡是一條直線

B.若點P到點A的距離為,則動點P的軌跡是一個周長為的圓

C.若點P到直線AB的距離與到點C的距離之和為1,則動點P的軌跡是橢圓

D.若點P到直線AD與直線的距離相等,則動點P的軌跡是雙曲線

【答案】ABD

【解析】

A.根據(jù)平面,判斷點的軌跡;B.根據(jù)平面與球相交的性質(zhì),判斷選項;C.由條件可轉(zhuǎn)化為,根據(jù)橢圓的定義判斷;D.由條件建立坐標系,求點的軌跡方程,判斷軌跡是否是雙曲線.

A.在正方體中,平面,

所以,所以平面,

平面,所以,

同理,所以平面,

而點P在側(cè)面所在的平面上運動,且

所以點的軌跡就是直線,故A正確;

B.的軌跡是以為球心,半徑為的球面與平面的交線,

即點的軌跡為小圓,設小圓的半徑為,

球心到平面的距離為1,則,

所以小圓周長,故B正確;

C.P到直線AB的距離就是點到點的距離,

即平面內(nèi)的點滿足,

即滿足條件的點的軌跡就是線段,不是橢圓,故C不正確;

D.如圖,過分別做于點,于點,

平面,所以,過,連結(jié)

,所以平面,所以

如圖建立平面直角坐標系,設

,則,,

,整理為:,

則動點的軌跡是雙曲線,故D正確.

故選:ABD

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓經(jīng)過橢圓的左右焦點,與橢圓在第一象限的交點為,且 , 三點共線.

(1)求橢圓的方程;

(2)設與直線為原點)平行的直線交橢圓兩點,當的面積取取最大值時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為

1)求直線的普通方程和曲線的直角坐標方程;

2)設點,直線與曲線的交點為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓周率是圓的周長與直徑的比值,一般用字母表示.我們可以通過設計一個試驗來估計的值:從表示的區(qū)域內(nèi)隨機抽取200個實數(shù)對,其中x,y兩個數(shù)能與1構(gòu)成鈍角三角形三邊長的數(shù)對共有56個.則用隨機模擬的方法估計的近似值為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1)求函數(shù)的單調(diào)區(qū)間和極值;

2)若存在滿足,證明成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市居民用天然氣實行階梯價格制度,具體見下表:

階梯

年用氣量(立方米)

價格(元/立方米)

第一階梯

不超過228的部分

3.25

第二階梯

超過228而不超過348的部分

3.83

第三階梯

超過348的部分

4.70

從該市隨機抽取10戶(一套住宅為一戶)同一年的天然氣使用情況,得到統(tǒng)計表如下:

居民用氣編號

1

2

3

4

5

6

7

8

9

10

年用氣量(立方米)

95

106

112

161

210

227

256

313

325

457

1)求一戶居民年用氣費y(元)關于年用氣量x(立方米)的函數(shù)關系式;

2)現(xiàn)要在這10戶家庭中任意抽取3戶,求抽到的年用氣量超過228立方米而不超過348立方米的用戶數(shù)的分布列與數(shù)學期望;

3)若以表中抽到的10戶作為樣本估計全市居民的年用氣情況,現(xiàn)從全市中依次抽取10戶,其中恰有k戶年用氣量不超過228立方米的概率為,求取最大值時的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱中,,的中點.

(I)若上的一點,且與直線垂直,求的值;

(Ⅱ)在(I)的條件下,設異面直線所成的角為45°,求直線與平面成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下圖為國家統(tǒng)計局網(wǎng)站發(fā)布的《2018年國民經(jīng)濟和社會發(fā)展統(tǒng)計公報》中居民消費價格月度漲跌幅度的折線圖(注:同比是今年第個月與去年第個月之比,環(huán)比是現(xiàn)在的統(tǒng)計周期和上一個統(tǒng)計周期之比)

下列說法正確的是(

20186CPI環(huán)比下降0.1%,同比上漲1.9%

20183CPI環(huán)比下降1.1%,同比上漲2.1%

20182CPI環(huán)比上漲0.6%,同比上漲1.4%

20186CPI同比漲幅比上月略微擴大1.9個百分點

A.①②B.③④C.①③D.②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

(1),求的取值范圍;

(2),且,證明:。

查看答案和解析>>

同步練習冊答案