【題目】設(shè)函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)設(shè)是否存在極值,若存在,請(qǐng)求出極值;若不存在,請(qǐng)說(shuō)明理由;

3)當(dāng)時(shí).證明:

【答案】(1)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(2)時(shí),無(wú)極值,時(shí),有極大值,無(wú)極小值;(3)證明見(jiàn)解析

【解析】

試題分析:(1)求出函數(shù)的導(dǎo)數(shù),求得的解集,即可求解函數(shù)的單調(diào)區(qū)間;(2)由題意得出的解析式,得出,按兩種情況分類討論,即可得出的極大值與極小值;(3)設(shè),轉(zhuǎn)化為證,只需證明,取出,得出的單調(diào)性,設(shè)的根為,此時(shí),進(jìn)而可得以證明.

試題解析:(1)

,即,得,故的增區(qū)間為

,即,得,故的減區(qū)間為

的單調(diào)增區(qū)間為,的單調(diào)減區(qū)間為

(2)

當(dāng)時(shí),恒有上為增函數(shù),故上無(wú)極值;

當(dāng)時(shí),令,得

,單調(diào)遞增,,單調(diào)遞減.

,無(wú)極小值;

綜上所述:時(shí),無(wú)極值

時(shí),有極大值,無(wú)極小值.

(3)證明:設(shè)),則即證,只要證

,,

上單調(diào)遞增

方程有唯一的實(shí)根,且

當(dāng)時(shí),.當(dāng)時(shí),

當(dāng)時(shí),

,則

原命題得證

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小組有3名男生和2名女生,從中任選2名同學(xué)參加演講比賽,那么互斥但不對(duì)立的兩

個(gè)事件是( )

A. 至少有1名男生與全是女生

B. 至少有1名男生與全是男生

C. 至少有1名男生與至少有1名女生

D. 恰有1名男生與恰有2名女生

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中是大于的常數(shù).

1求函數(shù)的定義域;

2當(dāng)時(shí), 求函數(shù)上的最小值;

3若對(duì)任意恒有,試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),為兩個(gè)不重合的平面,lm,n為兩兩不重合的直線,給出下列四個(gè)命題:

m,nm,n,則;

,l,則l

lm,ln,則mn;

l,l, .

其中真命題的序號(hào)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】不等式|sin x+tan x|<a的解集為N,不等式|sin x|+|tan x|<a的解集為M,則解集MN的關(guān)系是(  )

A. NM B. MN C. M=N D. MN

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】abR,則下列命題正確的是(  )

A. ab,a2b2 B. |a|>b,a2b2

C. a>|b|,a2b2 D. a≠|(zhì)b|,a2b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)復(fù)數(shù) z=i(1+i)(其中 i 是虛數(shù)單位),則復(fù)數(shù) z 對(duì)應(yīng)的點(diǎn)位于(

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱柱,側(cè)面底面,,底面為直角梯形其中,,中點(diǎn)

(1)求證:平面

(2)求銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,圖象與軸交于點(diǎn)異于原點(diǎn)),處的切線為,圖象與軸交于點(diǎn)且在該點(diǎn)處的切線為,并且平行.

)求的值;

)已知實(shí)數(shù),求函數(shù)的最小值;

)令,給定,對(duì)于兩個(gè)大于1的正數(shù),存在實(shí)數(shù)滿足:,,并且使得不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案