【題目】設函數(shù)f(x)=|2x﹣1|﹣|x+2|.
(1)解不等式f(x)>3;
(2)若x0∈R,使得f(x0)+2m2<4m,求實數(shù)m的取值范圍.
【答案】
(1)解:當x<﹣2時,f(x)=|2x﹣1|﹣|x+2|=1﹣2x+x+2=﹣x+3,f(x)>3,即﹣x+3>3,解得x<0,
又x<﹣2,∴x<﹣2;
當 時,f(x)=|2x﹣1|﹣|x+2|=1﹣2x﹣x﹣2=﹣3x﹣1,f(x)>3,即﹣3x﹣1>3,解得 ,又 ,∴ ;
當 時,f(x)=|2x﹣1|﹣|x+2|=2x﹣1﹣x﹣2=x﹣3,f(x)>3,即x﹣3>3,解得x>6,又 ,∴x>6.
綜上,不等式f(x)>3的解集為 .
(2)解:f(x)=|2x﹣1|﹣|x+2|= ,
∴ .
∵x0∈R,使得 ,
∴ ,
整理得4m2﹣8m﹣5<0,
解得 .
因此實數(shù)m的取值范圍是
【解析】(1)利用零點分區(qū)間討論去掉絕對值符號,化為分段函數(shù),在每一個前提下去解不等式,每一步的解都要和前提條件找交集得出每一步的解,最后把每一步最后結(jié)果找并集得出不等式的解;(2)根據(jù)第一步所化出的分段函數(shù)求出函數(shù)f(x)的最小值,若x0∈R,使得f(x0)+2m2<4m成立,只需4m﹣2m2>fmin(x),解出實數(shù)m的取值范圍.
【考點精析】本題主要考查了絕對值不等式的解法的相關知識點,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進行調(diào)查,隨機調(diào)查了50人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如表:
年齡 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上統(tǒng)計數(shù)據(jù)填下面2乘2列聯(lián)表,并問是否有的99%把握認為以45歲為分界點對“生育二胎放開”政策的支持度有差異:
(2)若對年齡在[5,15),[35,45)的被調(diào)查人中各隨機選取兩人進行調(diào)查,記選中的4人不支持“生育二胎”人數(shù)為ξ,求隨機變量ξ的分布列及數(shù)學期望;
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計 | |
支持 | a= | c= | |
不支持 | b= | d= | |
合計 |
參考數(shù)據(jù):
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓:的右焦點為,右頂點、上頂點分別為點,
已知橢圓的焦距為,且.
(1)求橢圓的方程;
(2)若過點的直線交橢圓于兩點,當面積取得最大時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x2+alnx(a∈R).
(1)當a=2時,求函數(shù)f(x)在點(1,f(1))處的切線方程;
(2)若函數(shù)g(x)=f(x)﹣2x+2x2 , 討論函數(shù)g(x)的單調(diào)性;
(3)若(2)中函數(shù)g(x)有兩個極值點x1 , x2(x1<x2),且不等式g(x1)≥mx2恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓的離心率為,且過點.
(1)求的方程;
(2)若動點在直線上,過作直線交橢圓于兩點,使得,再過作直線,證明:直線恒過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,A是函數(shù)f(x)=2x的圖象上的動點,過點A作直線平行于x軸,交函數(shù)g(x)=2x+2的圖象于點B,若函數(shù)f(x)=2x的圖象上存在點C使得△ABC為等邊三角形,則稱A為函數(shù)f(x)=2x上的好位置點.函數(shù)f(x)=2x上的好位置點的個數(shù)為( )
A.0
B.1
C.2
D.大于2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex(x2+ax+a).
(1)求f(x)的單調(diào)區(qū)間;
(2)求證:當a≥4時,函數(shù)f(x)存在最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三一班舉辦消防安全知識競賽,分別選出3名男生和3名女生組成男隊和女隊,每人一道必答題,答對則為本隊得10分,答錯與不答都得0分,已知男隊每人答對的概率依次為 , , ,女隊每人答對的概率都是 ,設每人回答正確與否相互之間沒有影響,用X表示男隊的總得分.
(I) 求X的分布列及其數(shù)學期望E(X);
(Ⅱ)求在男隊和女隊得分之和為50的條件下,男隊比女隊得分高的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com