【題目】已知數(shù)列{an}滿足:a1= ,an=an12+an1(n≥2且n∈N).
(Ⅰ)求a2 , a3;并證明:2 ≤an 3 ;
(Ⅱ)設(shè)數(shù)列{an2}的前n項(xiàng)和為An , 數(shù)列{ }的前n項(xiàng)和為Bn , 證明: = an+1

【答案】解:(I)a2=a12+a1= = , a3=a22+a2= =
證明:∵an=an12+an1 ,
∴an+ =an12+an1+ =(an1+ 2+ >(an1+ 2
∴an+ >(an1+ 2>(an2+ 4>>(an3+ 8>…>(a1+ =2 ,
∴an>2
又∵an﹣an1=an12>0,∴an>an1>an2>…>a1>1,
∴an2>an ,
∴an=an12+an1<2a ,
∴an<2a <222 <2224 <…<22224…2 a1
=2 = 3
綜上,2 ≤an 3
(II)證明:∵an=an12+an1 , ∴an12=an﹣an1 ,
∴An=a12+a22+a32+…an2=(a2﹣a1)+(a3﹣a2)+…+(an+1﹣an)=an+1
∵an=an12+an1=an1(an1+1),
= = ,
= ,
∴Bn= …+ =( )+( )+( )+…+(
=
= =
【解析】(I)分別令n=2,3即可計(jì)算a2 , a3 , 配方得an+ >(an1+ 2 , 利用{an+ }的增減性得出不等式2 ≤an , 利用{an}增減性得出an 3 ;(II)分別使用因式分解和裂項(xiàng)法計(jì)算An , Bn , 即可得出結(jié)論.
【考點(diǎn)精析】利用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式對(duì)題目進(jìn)行判斷即可得到答案,需要熟知數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的是(
A.命題p:“?x0∈R, ”,則命題?p:?x∈R,x2﹣2x+1>0
B.“l(fā)na>lnb”是“2a>2b”的充要條件
C.命題“若x2=2,則 ”的逆否命題是“若 ,則x2≠2”
D.命題p:?x0∈R,1﹣x0<lnx0;命題q:對(duì)?x∈R,總有2x>0;則p∧q是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記min{x,y}= 設(shè)f(x)=min{x2 , x3},則(
A.存在t>0,|f(t)+f(﹣t)|>f(t)﹣f(﹣t)
B.存在t>0,|f(t)﹣f(﹣t)|>f(t)﹣f(﹣t)
C.存在t>0,|f(1+t)+f(1﹣t)|>f(1+t)+f(1﹣t)
D.存在t>0,|f(1+t)﹣f(1﹣t)|>f(1+t)﹣f(1﹣t)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|﹣1≤x≤2},B={x|x2﹣4x≤0},則A∪B= , A∩(RB)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,a、b、c分別是角A、B、C的對(duì)邊,若A滿足2cos2A+cos(2A+ )=﹣
(Ⅰ)求A的值;
(Ⅱ)若c=3,△ABC的面積為3 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線y2=2px(p>0)的焦點(diǎn)F的直線與拋物線相交于M、N兩點(diǎn),自M、N向準(zhǔn)線l作垂線,垂足分別為M1、N1.

(1)求;

(2)記△FMM1、△FM1N1、△FNN1的面積分別為、,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校某文具商店經(jīng)營某種文具,商店每銷售一件該文具可獲利3元,若供大于求則削價(jià)處理,每處理一件文具虧損1元;若供不應(yīng)求,則可以從外部調(diào)劑供應(yīng),此時(shí)每件文具僅獲利2元.為了了解市場需求的情況,經(jīng)銷商統(tǒng)計(jì)了去年一年(52周)的銷售情況.

銷售量(件)

10

11

12

13

14

15

16

周數(shù)

2

4

8

13

13

8

4

以去年每周的銷售量的頻率為今年每周市場需求量的概率.
(1)要使進(jìn)貨量不超過市場需求量的概率大于0.5,問進(jìn)貨量的最大值是多少?
(2)如果今年的周進(jìn)貨量為14,寫出周利潤Y的分布列;
(3)如果以周利潤的期望值為考慮問題的依據(jù),今年的周進(jìn)貨量定為多少合適?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲C的極坐標(biāo)方程ρ=2sinθ,設(shè)直線L的參數(shù)方程 ,(t為參數(shù))設(shè)直線L與x軸的交點(diǎn)M,N是曲線C上一動(dòng)點(diǎn),求|MN|的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域?yàn)镽的偶函數(shù)f(x)滿足x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時(shí),f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(x+1)恰有三個(gè)零點(diǎn),則a的取值范圍是(
A.(0,
B.(0,
C.( ,
D.( ,

查看答案和解析>>

同步練習(xí)冊(cè)答案