正方體的截平面不可能是: (1) 鈍角三角形  (2) 直角三角形   (3) 菱 形    (4) 正五邊形   (5) 正六邊形;    下述選項正確的是:               (    )
A. (1)(2)(5)B. (1)(2)(4)C. (2)(3)(4)D. (3)(4)(5)
B
正方體的截平面可以是銳角三角形、等腰三角形、等邊三角形,但不可能是鈍角三角形,直角三角形(證明略);對四邊形來講,可以是梯形(等腰梯形)、平行四邊形、菱形,矩形、但不可能是直角梯形(證明略);對五邊形來講,可以是任意五邊形,不可能是正五邊形(證明略);對六邊形來講,可以是六邊形(正六邊形)。
 選 【 B 】
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在直三棱柱ABC?A1B1C1中,AB=BC=,BB1=2,∠ABC=90°,E、F分為AA1、C1B1的中點,沿棱柱的表面從E到F兩點的最短路徑的長度是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一個容器的外形是一個棱長為的正方體,其三視圖如圖所示,則容器的容積為 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

正六棱柱各棱長均為1,求一動點從A沿表面移動到點D1時最短的路程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知:直線,平面,如圖.求證:直線與平面相交.
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

底面是平行四邊形的四棱錐P-ABCD,點EPD上,且PEED=2∶1.
問:在棱PC上是否存在一點F,使BF∥面AEC?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知空間四邊形ABCD的各邊和對角線的長都等于a,點M、N分別是AB、CD的中點.

(1)求證:MN⊥AB,MN⊥CD;
(2)求MN的長;
(3)求異面直線AN與CM所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

 如圖所示,長方體ABCD-A1B1C1D1中,AB=a,BC=b,BB1=c,并且a>b>c>0.
求沿著長方體的表面自A到C的最短線路的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖所示,在長方體OABC-O1A1B1C1中,|OA|="2," |AB|=3,|AA1|=3,MOB1BO1的交點,則M點的坐標是____________.

查看答案和解析>>

同步練習冊答案