【題目】已知橢圓的焦距為2,且長軸長是短軸長的.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若過橢圓左焦點的直線交橢圓兩點,點軸非負(fù)半軸上,且點到坐標(biāo)原點的距離為2,求取得最大值時的面積.

【答案】12

【解析】

1)由題意,解方程組即可;

2)分直線垂直于軸和直線不垂直于軸兩種情況討論,當(dāng)直線垂直于軸時,易得三點坐標(biāo),再利用數(shù)量積的坐標(biāo)運算即可算得;當(dāng)直線不垂直于軸時,設(shè),,直線方程為,聯(lián)立橢圓方程得到根與系數(shù)的關(guān)系,代入的坐標(biāo)表示中,即可得到關(guān)于的函數(shù),求出范圍結(jié)合第一種情況即可得到取的最大值,進(jìn)一步得到三角形的面積.

1)據(jù)題意,得

解得,

橢圓的標(biāo)準(zhǔn)方程為.

2)據(jù)題設(shè)知,.

設(shè).

討論:

當(dāng)直線垂直于軸時,,,,,

;

當(dāng)直線不垂直于軸時,設(shè)直線方程為.

據(jù).

,,

.

綜上,,

此時.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著2022年北京冬奧會的臨近,中國冰雪產(chǎn)業(yè)快速發(fā)展,冰雪運動人數(shù)快速上升,冰雪運動市場需求得到釋放.如圖是2012-2018年中國雪場滑雪人數(shù)(單位:萬人)與同比增長情況統(tǒng)計圖.則下面結(jié)論中正確的是( )

2012-2018年,中國雪場滑雪人數(shù)逐年增加;②2013-2015年,中國雪場滑雪人數(shù)和同比增長率均逐年增加;③中國雪場2015年比2014年增加的滑雪人數(shù)和2018年比2017年增加的滑雪人數(shù)均為220萬人,因此這兩年的同比增長率均有提高;④2016-2018年,中國雪場滑雪人數(shù)的增長率約為23.4%.

A.①②③B.②③④C.①②D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)長期堅持貫徹以人為本,因材施教的教育理念,每年都會在校文化節(jié)期間舉行“數(shù)學(xué)素養(yǎng)能力測試”和“語文素養(yǎng)能力測試”兩項測試,以給學(xué)生課外興趣學(xué)習(xí)及輔導(dǎo)提供參考依據(jù).成績分為,,,五個等級(等級,,,,分別對應(yīng)5分,4分,3分,2分,1分).某班學(xué)生兩科的考試成績的數(shù)據(jù)統(tǒng)計如圖所示,其中“語文素養(yǎng)能力測試”科目的成績?yōu)?/span>的考生有3人.

1)求該班“數(shù)學(xué)素養(yǎng)能力測試”的科目平均分以及“數(shù)學(xué)素養(yǎng)能力測試”科目成績?yōu)?/span>的人數(shù);

2)若該班共有9人得分大于7分,其中有210分,39分,48分.從這9人中隨機(jī)抽取三人,設(shè)三人的成績之和為,求

3)從該班得分大于7分的9人中選3人即甲,乙,丙組隊參加學(xué)校內(nèi)的“數(shù)學(xué)限時解題挑戰(zhàn)賽”.規(guī)則為:每隊首先派一名隊員參加挑戰(zhàn)賽,在限定的時間,若該生解決問題,即團(tuán)隊挑戰(zhàn)成功,結(jié)束挑戰(zhàn);若解決問題失敗,則派另外一名隊員上去挑戰(zhàn),直至派完隊員為止.通過訓(xùn)練,已知甲,乙,丙通過挑戰(zhàn)賽的概率分別是,,問以怎樣的先后順序派出隊員,可使得派出隊員數(shù)目的均值達(dá)到最?(只需寫出結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的標(biāo)準(zhǔn)方程是,設(shè)是橢圓的左焦點,為直線上任意一點,過的垂線交橢圓于點,.

1)證明:線段平分線段(其中為坐標(biāo)原點);

2)當(dāng)最小時,求點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績分布在的范圍內(nèi),規(guī)定分?jǐn)?shù)在50以上(含50)的作文被評為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.

1)求的值;

2)填寫下面列聯(lián)表,能否在犯錯誤的概率不超過0.01的情況下認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)?

文科生

理科生

合計

獲獎

6

不獲獎

合計

400

3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學(xué)生中,任意抽取2名學(xué)生,記“獲得優(yōu)秀作文”的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

附:,其中.

.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求直線的普通方程和曲線的直角坐標(biāo)方程;

2)若射線)與直線和曲線分別交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐的棱長均為6,其內(nèi)有個小球,球與三棱錐的四個面都相切,球與三棱錐的三個面和球都相切,如此類推,,球與三棱錐的三個面和球都相切(,且),則球的體積等于__________,球的表面積等于__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,當(dāng)x[0,1]時,fx)=x,若在區(qū)間(﹣1,1]內(nèi),有兩個零點,則實數(shù)m的取值范圍是( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是各項均為正數(shù)的無窮數(shù)列,數(shù)列滿足(n),其中常數(shù)k為正整數(shù).

1)設(shè)數(shù)列n項的積,當(dāng)k2時,求數(shù)列的通項公式;

2)若是首項為1,公差d為整數(shù)的等差數(shù)列,且4,求數(shù)列的前2020項的和;

3)若是等比數(shù)列,且對任意的n,,其中k≥2,試問:是等比數(shù)列嗎?請證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案