【題目】在銳角△ABC中,角A,B,C的對邊分別為a,b,c,滿足 = .
(1)求角A的大;
(2)若a= ,△ABC的面積S△ABC=3 ,求b+c的值,;
(3)若函數(shù)f(x)=2sinxcos(x+ ),求f(B)的取值范圍.
【答案】
(1)解:銳角△ABC中,角A,B,C的對邊分別為a,b,c,滿足 = ,
∴ = ,
整理,得bc=b2+c2﹣a2,
∴cosA= = = ,
∴A= .
(2)解:∵a= ,△ABC的面積S△ABC=3 ,A= ,
∴S△ABC= =3 ,解得bc=12,
cosA= = = ,解得b2+c2=25,
∴(b+c)2=b2+c2+2bc=25+24=49,
∴b+c=7
(3)解:∵f(x)=2sinxcos(x+ )
=2sinx(cosxcos ﹣sinxsin )
= sinxcosx﹣sin2x
= sin2x﹣
= sin2x+ cos2x﹣
=cos sin2x+sin cos2x﹣
=sin(2x+ )﹣ ,
∵A= ,∴銳角△ABC中,B∈(0, ),∴2B+ ∈( , ),
f(B)=sin(2B+ )﹣ ,
當(dāng)2B+ = 時(shí),f(B)max=1﹣ = ,
當(dāng)2B+ = 時(shí),f(B)min=﹣ ﹣ =﹣ ﹣ .
∴f(B)的取值范圍是(﹣ , )
【解析】(1)利用余弦定理推導(dǎo)出bc=b2+c2﹣a2,從而求出cosA= ,進(jìn)而能求出A.(2)由S△ABC= =3 ,得bc=12,由余弦定理求出b2+c2=25,從而求出(b+c)2,進(jìn)而求出b+c的值.(3)由f(x)=2sinxcos(x+ )=sin(2x+ )﹣ ,A= ,得2B+ ∈( , ),由此能求出f(B)=sin(2B+ )﹣ 的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校在高二年級開設(shè)選修課,其中數(shù)學(xué)選修課開了三個(gè)班.選課結(jié)束后,有四名選修英語的同學(xué)要求改修數(shù)學(xué),但數(shù)學(xué)選修每班至多可再接收兩名同學(xué),那么安排好這四名同學(xué)的方案有( )
A.72種
B.54種
C.36種
D.18種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=2x2+bx+c,不等式f(x)<0的解集為(0,5).
(1)求b,c的值;
(2)若對任意x∈[﹣1,1],不等式f(x)+t≤2恒成立,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的三個(gè)內(nèi)角A,B,C的對邊長分別為a,b,c,R是△ABC的外接圓半徑,有下列四個(gè)條件: ⑴(a+b+c)(a+b﹣c)=3ab
⑵sinA=2cosBsinC
⑶b=acosC,c=acosB
⑷
有兩個(gè)結(jié)論:甲:△ABC是等邊三角形.乙:△ABC是等腰直角三角形.
請你選取給定的四個(gè)條件中的兩個(gè)為條件,兩個(gè)結(jié)論中的一個(gè)為結(jié)論,寫出一個(gè)你認(rèn)為正確的命題 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1+2a2++22a3+…2n﹣1an=(n2n﹣2n+1)t對任意n∈N*成立,其中常數(shù)t>0.若關(guān)于n的不等式 + + +…+ > 的解集為{n|n≥4,n∈N*},則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是邊長為1的正六邊形ABCDEF的邊上的一個(gè)動(dòng)點(diǎn),設(shè) =x +y ,則x+y的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)P是圓O:x2+y2=1與x軸正半軸的交點(diǎn),半徑OA在x軸的上方,現(xiàn)將半徑OA繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn) 得到半徑OB.設(shè)∠POA=x(0<x<π), .
(1)若 ,求點(diǎn)B的坐標(biāo);
(2)求函數(shù)f(x)的最小值,并求此時(shí)x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:x﹣2y+3=0和l2:x+2y﹣9=0的交點(diǎn)為A.
(1)求過點(diǎn)A,且與直線2x+3y﹣1=0平行的直線方程;
(2)求過點(diǎn)A,且傾斜角為直線l1傾斜角2倍的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場在一部向下運(yùn)行的手扶電梯終點(diǎn)的正上方豎直懸掛一幅廣告畫.如圖,該電梯的高AB為4米,它所占水平地面的長AC為8米.該廣告畫最高點(diǎn)E到地面的距離為10.5米.最低點(diǎn)D到地面的距離6.5米.假設(shè)某人的眼睛到腳底的距離MN為1.5米,他豎直站在此電梯上觀看DE的視角為θ.
(1)設(shè)此人到直線EC的距離為x米,試用x表示點(diǎn)M到地面的距離;
(2)此人到直線EC的距離為多少米,視角θ最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com