【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)是否存在一個正實數(shù),滿足當(dāng)時,恒成立,若存在,求出的值;若不存在,請說明理由.
【答案】(1)時,的增函數(shù)區(qū)間為,無減函數(shù)區(qū)間;時,的增函數(shù)區(qū)間為,減函數(shù)區(qū)間為;時,的增函數(shù)區(qū)間為,減函數(shù)區(qū)間為;(2)存在, .
【解析】
(1)根據(jù)題意,分析函數(shù)定義域,求導(dǎo),分類討論參數(shù)不同的取值范圍時函數(shù)單調(diào)性,即可求解;
(2)根據(jù)題意,,由(1)知的最大值為,若對任意實數(shù),恒成立,只須使即可.又因為,所以不等式等價于:,即:,設(shè),對求導(dǎo),分析單調(diào)性,討論的范圍,判斷不等式成立條件.
(1)函數(shù)的定義域為,
①若在上為增函數(shù);
②若,∵,∴當(dāng)時,;當(dāng)時,;
所以在上為增函數(shù),在上為減函數(shù);
③若,∵,∴當(dāng)時,;當(dāng)時,;
所以在上為減函數(shù),在為增函數(shù)
綜上可知,時,的增函數(shù)區(qū)間為,無減函數(shù)區(qū)間;
時,的增函數(shù)區(qū)間為,減函數(shù)區(qū)間為;
時,的增函數(shù)區(qū)間為,減函數(shù)區(qū)間為;
(2)由(1)知,時,的最大值為,
若對任意實數(shù),恒成立,只須使即可.
又因為,所以不等式等價于:,
即:,
設(shè),則,
∴當(dāng)時,;當(dāng)時,
所以,在上為減函數(shù),在上為增函數(shù),
∴當(dāng)時,,不等式不成立,
當(dāng)時,,不等式不成立,
當(dāng)時,,不等式成立,
∴存在正實數(shù)且時,滿足當(dāng)時,恒成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機(jī)從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.
(1)經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取6個,再從這6個中隨機(jī)抽取3個,求這3個芒果中恰有1個在內(nèi)的概率.
(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出如下兩種收購方案:
A:所有芒果以10元/千克收購;
B:對質(zhì)量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購,通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間和對稱中心;
(2)當(dāng)時,方程有解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對100名高一新生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 10 | ||
女生 | 20 | ||
合計 |
已知在這100人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為.
(1)請將上述列聯(lián)表補充完整;
(2)并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;
(3)已知在被調(diào)查的學(xué)生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學(xué)生中隨機(jī)抽取2人,求恰好有1人喜歡游泳的概率.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,橢圓C的長軸長為4.
(1)求橢圓C的方程;
(2)已知直線與橢圓C交于兩點,是否存在實數(shù)k使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點O?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖空間幾何體中,與,均為邊長為的等邊三角形,平面平面,平面平面.
(Ⅰ)求線段的長度.
(Ⅱ)試在平面內(nèi)作一條直線,使得直線上任意一點與的連線均與平面平行,并給出詳細(xì)證明;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若函數(shù)存在唯一的零點,且,則的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),下列結(jié)論中不正確的是( )
A.的圖象關(guān)于點中心對稱
B.的圖象關(guān)于直線對稱
C.的最大值為
D.既是奇函數(shù),又是周期函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為增強(qiáng)市民交通規(guī)范意識,我市面向全市征召勸導(dǎo)員志愿者,分布于各候車亭或十字路口處.現(xiàn)從符合條件的500名志愿者中隨機(jī)抽取100名志愿者,他們的年齡情況如下表所示.
分組(單位:歲) | 頻數(shù) | 頻率 |
5 | ||
① | ||
② | ||
合計 |
(1)頻率分布表中的①、②位置應(yīng)填什么數(shù)據(jù)?并在答題卡中補全頻率分布直方圖(如圖),再根據(jù)頻率分布直方圖估計這500名志愿者中年齡在[30,35)歲的人數(shù);
(2)在抽出的100名志愿者中按年齡再采用分層抽樣法抽取20人參加“規(guī)范摩的司機(jī)的交通意識”培訓(xùn)活動,從這20人中選取2名志愿者擔(dān)任主要負(fù)責(zé)人,記這2名志愿者中“年齡低于30歲”的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com