【題目】直線l交橢圓4x2+5y2=80于M、N兩點,橢圓的上頂點為B點,若△BMN的重心恰好落在橢圓的右焦點上,則直線l的方程是(
A.5x+6y﹣28=0
B.5x﹣6y﹣28=0
C.6x+5y﹣28=0
D.6x﹣5y﹣28=0

【答案】D
【解析】解:設(shè)M(x1 , y1)、N(x2 , y2),MN的中點為G,MN的方程為y=kx+b, 而B(0,4),又△BMN的重心恰好落在橢圓的右焦點(2,0)上,
故x1+x2=6,y1+y2=﹣4,則MN的中點G為(3,﹣2),
又M、N在橢圓上,
①﹣②,可得4(x1﹣x2)(x1+x2)+5(y1﹣y2)(y1+y2)=80,
又由x1+x2=6,y1+y2=﹣4,
可得k= = ,
又由直線MN過點G(3,﹣2),則直線l的方程是6x﹣5y﹣28=0.
故選D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)= + 的定義域為(
A.{x|x≥﹣3且x≠﹣2}
B.{x|x≥﹣3且x≠2}
C.{x|x≥﹣3}
D.{x|x≥﹣2且x≠3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的偶函數(shù)f(x)滿足f(x+1)=﹣f(x),且當x∈[﹣1,0)時f(x)=( x , 則 f(log28)等于(
A.3
B.
C.﹣2
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(sinx+cosx)2+cos2x
(1)求f(x)最小正周期;
(2)求f(x)在區(qū)間[ ]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)畫出函數(shù)f(x)圖象;
(2)求f(﹣a2﹣1)(a∈R),f(f(3))的值;
(3)當﹣4≤x<3時,求f(x)取值的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,將邊長為2的正方形沿對角線折疊,使得平面平面,若平面,且.

(1)求證: 平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,過拋物線C:y2=2px(p>0)的焦點F作直線交C于A、B兩點,過A、B分別向C的準線l作垂線,垂足為A′,B′,已知四邊形AA′B′F與BB′A′F的面積分別為15和7,則△A′B′F的面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,ABCD是平行四邊形,M,N分別是AB,PC的中點,求證:MN∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l經(jīng)過直線3x+4y﹣2=0與直線2x+y+2=0的交點P,且垂直于直線x﹣2y﹣1=0.求:
(Ⅰ)直線l的方程;
(Ⅱ)直線l與兩坐標軸圍成的三角形的面積S.

查看答案和解析>>

同步練習冊答案