【題目】已知函數(shù)(且a為常數(shù))和(且k為常數(shù)),有以下命題:①當時,函數(shù)沒有零點;②當時,若恰有3個不同的零點,則;③對任意的,總存在實數(shù),使得有4個不同的零點,且成等比數(shù)列.其中的真命題是_____(寫出所有真命題的序號)
【答案】②
【解析】
①根據(jù)題意,將函數(shù)的零點個數(shù)問題,轉換為對應函數(shù)圖像的交點個數(shù)問題,分別判斷,兩種情況下,函數(shù)零點的個數(shù)情況,即可判斷出結果;
②根據(jù)題意,先令,畫出函數(shù)的圖像,結合函數(shù)零點個數(shù)以及函數(shù)圖像,判斷方程根的分布情況,以及方程根的個數(shù)情況,即可判斷出結果;
③根據(jù)題意,只需判斷出時,函數(shù)零點個數(shù)不一定是個,即可得出結果.
①因為,,由得,函數(shù)的零點,即是函數(shù)圖像與直線交點的橫坐標,
當時,恒成立,因為,所以時,函數(shù)顯然沒有零點;
當時,由得,即,即,
因為,所以恒成立,若時,函數(shù)可能有零點;若,函數(shù)沒有零點;故①錯;
②當時,因為恰有個不同零點,令,則關于的方程有兩個不同的實數(shù)解,記作,不妨令;
做出函數(shù)的圖像如下:
由圖像可得:當時,與有個交點;
當時,與有個交點;
因為函數(shù)恰有個不同零點,
則有個根,記作;有個根,記作(不妨令);
所以只需,,因此,,
所以;,,因此;故②正確;
③由,得;
所以函數(shù)與圖像交點個數(shù),即為函數(shù)的零點個數(shù);
由②中圖像可知:當時,與在上有個交點,即函數(shù)在上有個零點;
當時,若,則函數(shù)在上單調(diào)遞增,因此函數(shù)與在上最多只有個交點,即函數(shù)在上最多只有個零點;不滿足存在實數(shù),使得有4個不同的零點;
若,由基本不等式可得:,即時,;
若,則函數(shù)與在上最多只有個交點,也不滿足對任意的,總存在實數(shù),使得有4個不同的零點.故③錯.
故答案為:②.
科目:高中數(shù)學 來源: 題型:
【題目】人口平均預期壽命是綜合反映人們健康水平的基本指標.年第六次全國人口普查資料表明,隨著我國社會經(jīng)濟的快速發(fā)展,人民生活水平的不斷提高以及醫(yī)療衛(wèi)生保障體系的逐步完善,我國人口平均預期壽命繼續(xù)延長,國民整體健康水平有較大幅度的提高.下圖體現(xiàn)了我國平均預期壽命變化情況,依據(jù)此圖,下列結論錯誤的是( )
A.男性的平均預期壽命逐漸延長
B.女性的平均預期壽命逐漸延長
C.男性的平均預期壽命延長幅度略高于女性
D.女性的平均預期壽命延長幅度略高于男性
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)則x∈[﹣1,e]時,f(x)的最小值為_____;設g(x)=[f(x)]2﹣f(x)+a若函數(shù)g(x)有6個零點,則實數(shù)a的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著新高考改革的不斷深入,高中學生生涯規(guī)劃越來越受到社會的關注.一些高中已經(jīng)開始嘗試開設學生生涯規(guī)劃選修課程,并取得了一定的成果.如表為某高中為了調(diào)查學生成績與選修生涯規(guī)劃課程的關系,隨機抽取50名學生的統(tǒng)計數(shù)據(jù).
成績優(yōu)秀 | 成績不夠優(yōu)秀 | 總計 | |
選修生涯規(guī)劃課 | 15 | 10 | 25 |
不選修生涯規(guī)劃課 | 6 | 19 | 25 |
總計 | 21 | 29 | 50 |
(1)根據(jù)列聯(lián)表運用獨立性檢驗的思想方法能否有99%的把握認為“學生的成績是否優(yōu)秀與選修生涯規(guī)劃課有關”,并說明理由;
(2)現(xiàn)用分層抽樣的方法在選修生涯規(guī)劃課的成績優(yōu)秀和成績不夠優(yōu)秀的學生中隨機抽取5名學生作為代表,從5名學生代表中再任選2名學生繼續(xù)調(diào)查,求這2名學生成績至少有1人優(yōu)秀的概率.
參考附表:
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
參考公式,其中n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著新高考改革的不斷深入,高中學生生涯規(guī)劃越來越受到社會的關注.一些高中已經(jīng)開始嘗試開設學生生涯規(guī)劃選修課程,并取得了一定的成果.下表為某高中為了調(diào)查學生成績與選修生涯規(guī)劃課程的關系,隨機抽取50名學生的統(tǒng)計數(shù)據(jù).
成績優(yōu)秀 | 成績不夠優(yōu)秀 | 總計 | |
選修生涯規(guī)劃課 | 15 | 10 | 25 |
不選修生涯規(guī)劃課 | 6 | 19 | 25 |
總計 | 21 | 29 | 50 |
(Ⅰ)根據(jù)列聯(lián)表運用獨立性檢驗的思想方法能否有的把握認為“學生的成績是否優(yōu)秀與選修生涯規(guī)劃課有關”,并說明理由;
(Ⅱ)如果從全校選修生涯規(guī)劃課的學生中隨機地抽取3名學生,求抽到成績不夠優(yōu)秀的學生人數(shù)的分布列和數(shù)學期望(將頻率當作概率計算).
參考附表:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
參考公式,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),已知方程(為常數(shù))在上恰有三個根,分別為,下述四個結論:
①當時,的取值范圍是;
②當時,在上恰有2個極小值點和1個極大值點;
③當時,在上單調(diào)遞增;
④當時,的取值范圍為,且
其中正確的結論個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線()上的兩個動點和,焦點為F.線段AB的中點為,且A,B兩點到拋物線的焦點F的距離之和為8.
(1)求拋物線的標準方程;
(2)若線段AB的垂直平分線與x軸交于點C,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}滿足:a1=1,且當n∈N*時,an3+an2(1﹣an+1)+1=an+1.
(1)求a2,a3的值;
(2)比較an與an+1的大小,并證明你的結論.
(3)若bn=(1),其中n∈N*,證明:0<b1+b2+……+bn<2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣sinx+ax(a>0).
(1)若a=1,求證:當x∈(1,)時,f(x)<2x﹣1;
(2)若f(x)在(0,2π)上有且僅有1個極值點,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com