【題目】某工廠制作仿古的桌子和椅子,需要木工和漆工兩道工序.已知生產(chǎn)一把椅子需要木工4個工作時,漆工2個工作時;生產(chǎn)一張桌子需要木工8個工作時,漆工1個工作時.生產(chǎn)一把椅子的利潤為1500元,生產(chǎn)一張桌子的利潤為2000元.該廠每個月木工最多完成8000個工作時、漆工最多完成1300個工作時.根據(jù)以上條件,該廠安排生產(chǎn)每個月所能獲得的最大利潤是__________元.
【答案】2100000
【解析】
設(shè)每天生產(chǎn)桌子張,椅子張,利潤總額為,目標(biāo)函數(shù)為,則作出可行域,把直線向右上方平移至的位置時,直線經(jīng)過可行域上的點,此時取最大值,解方程得坐標(biāo)為, ,所以每天應(yīng)生產(chǎn)桌子張,椅子張才能獲得最大利潤,最大利潤為,故答案為.
【方法點晴】本題主要考查利用線性規(guī)劃解決現(xiàn)實生活中的最佳方案及最大利潤問題,屬于難題題. 求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校舉行了一次安全教育知識競賽,競賽的原始成績采用百分制,已知高三學(xué)生的原始成績均分布在內(nèi),發(fā)布成績使用等級制,各等級劃分標(biāo)準(zhǔn)見表.
原始成績 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等級 | 優(yōu)秀 | 良好 | 及格 | 不及格 |
為了解該校高三年級學(xué)生安全教育學(xué)習(xí)情況,從中抽取了名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計,按照的分組作出頻率分布直方圖如圖所示,其中等級為不及格的有5人,優(yōu)秀的有3人.
(1)求和頻率分布直方圖中的的值;
(2)根據(jù)樣本估計總體的思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若該校高三學(xué)生共1000人,求競賽等級在良好及良好以上的人數(shù);
(3)在選取的樣本中,從原始成績在80分以上的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行學(xué)習(xí)經(jīng)驗介紹,求抽取的2名學(xué)生中優(yōu)秀等級的學(xué)生恰好有1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是雙曲線 (a>0,b>0,xy≠0)上的動點,F(xiàn)1,F(xiàn)2是雙曲線的焦點,M是∠F1PF2的平分線上一點,且.某同學(xué)用以下方法研究|OM|:延長F2M交PF1于點N,可知△PNF2為等腰三角形,且M為F2N的中點,得|OM|=|NF1|=…=a。類似地:P是橢圓 (a>b>0,xy≠0)上的動點,F(xiàn)1,F(xiàn)2是橢圓的焦點,M是∠F1PF2的平分線上一點,且,則|OM|的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓學(xué)生了解環(huán)保知識,增強(qiáng)環(huán)保意識,某中學(xué)舉行了一次“環(huán)保知識競賽”,共有900名學(xué)生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計.請你根據(jù)尚未完成并有局部污損的頻率分布表和頻數(shù)分布直方圖,解答下列問題:
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 0.16 | |
70.5~80.5 | 10 | |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | ||
合計 | 50 |
(Ⅰ)填充頻率分布表的空格(將答案直接填在表格內(nèi));
(Ⅱ)補(bǔ)全頻數(shù)條形圖;
(Ⅲ)若成績在75.5~85.5分的學(xué)生為二等獎,問獲得二等獎的學(xué)生約為多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐,底面為正方形,且底面,過的平面與側(cè)面的交線為,且滿足(表示的面積).
(1)證明: 平面;
(2)當(dāng)時,二面角的余弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市小型機(jī)動車駕照“科二”考試中共有5項考察項目,分別記作①,②,③,④,⑤.
(1)某教練將所帶10名學(xué)員“科二”模擬考試成績進(jìn)行統(tǒng)計(如圖1所示),并打算從恰有2項成績不合格的學(xué)員中任意抽出2人進(jìn)行補(bǔ)測(只測不合格的項目),求補(bǔ)測項目種類不超過3項的概率;
(2)如圖2,某次模擬演練中,教練要求學(xué)員甲倒車并轉(zhuǎn)向90°,在汽車邊緣不壓射線AC與射線BD的前提下,將汽車駛?cè)胫付ǖ耐\囄?/span>. 根據(jù)經(jīng)驗,學(xué)員甲轉(zhuǎn)向90°后可使車尾邊緣完全落在線段CD,且位于CD內(nèi)各處的機(jī)會相等.若CA="BD=0.3m," AB="2.4m." 汽車寬度為1.8m, 求學(xué)員甲能按教練要求完成任務(wù)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com