【題目】已知函數(shù).
(1)當(dāng)時,判斷在的單調(diào)性,并用定義證明.
(2)若對任意,不等式恒成立,求的取值范圍;
(3)討論零點的個數(shù).
【答案】(1)單調(diào)遞減函數(shù);(2);(3)當(dāng)或時,有1個零點.當(dāng)或或時,有2個零點;當(dāng)或時,有3個零點.
【解析】
試題(1)設(shè),利用單調(diào)性的定義,即可證得函數(shù)的單調(diào)性;(2)由得,變形為,即,即可根據(jù)函數(shù)的性質(zhì),求得實數(shù)的取值范圍;(3)由可得變?yōu)?/span>,令的圖象及直線,
根據(jù)圖象即可判斷函數(shù)的零點個數(shù).
試題解析:證明:設(shè),則
=
又,所以,,
所以
所以,即,
故當(dāng)時,在上單調(diào)遞減的》
(2)由得,
變形為,即
而,
當(dāng)即時,
所以.
(3)由可得(),變?yōu)?/span>()
令的圖像及直線,
由圖像可得:
當(dāng)或時,有1個零點.
當(dāng)或或時,有2個零點;
當(dāng)或時,有3個零點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對在直角坐標(biāo)系的第一象限內(nèi)的任意兩點,作如下定義:,那么稱點是點的“上位點”,同時點是點的“下位點”.
(1)試寫出點的一個“上位點”坐標(biāo)和一個“下位點”坐標(biāo);
(2)設(shè)、、、均為正數(shù),且點是點的上位點,請判斷點是否既是點的“下位點”又是點的“上位點”,如果是請證明,如果不是請說明理由;
(3)設(shè)正整數(shù)滿足以下條件:對任意實數(shù),總存在,使得點既是點的“下位點”,又是點的“上位點”,求正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù). 為實數(shù),且,記由所有組成的數(shù)集為.
(1)已知,求;
(2)對任意的,恒成立,求的取值范圍;
(3)若,,判斷數(shù)集中是否存在最大的項?若存在,求出最大項;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程(φ為參數(shù)).以O(shè)為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)直線l的極坐標(biāo)方程是ρ(sinθ+)=3,射線OM:θ=與圓C的交點為O,P,與直線l的交點為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓+=1(a>b>0)上的點P到左,右兩焦點F1,F2的距離之和為2,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過右焦點F2的直線l交橢圓于A,B兩點,若y軸上一點M(0,)滿足|MA|=|MB|,求直線l的斜率k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校升旗儀式上,主持人站在主席臺前沿D處,測得旗桿AB頂部的仰角為俯角最后一排學(xué)生C的俯角為最后一排學(xué)生C測得旗桿頂部的仰角為旗桿底部與學(xué)生在一個水平面上,并且不計學(xué)生身高.
(1)設(shè)米,試用和表示旗桿的高度AB(米);
(2)測得米,若國歌長度約為50秒,國旗班升旗手應(yīng)以多大的速度勻速升旗才能是國旗到達(dá)旗桿頂點時師生的目光剛好停留在B處?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠擬用集裝箱托運甲、乙兩種貨物,集裝箱的體積、重量、可獲利潤和托運能力等限制數(shù)據(jù)列在表中,如何設(shè)計甲、乙兩種貨物應(yīng)各托運的箱數(shù)可以獲得最大利潤,最大利潤是多少?
貨物 | 體積箱 | 重量箱 | 利潤百元箱 |
甲 | 5 | 2 | 20 |
乙 | 4 | 5 | 10 |
托運限制 | 24 | 13 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,從參加環(huán)保知識競賽的學(xué)生中抽出名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:
(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計這次環(huán)保知識競賽成績的平均數(shù)、眾數(shù)、中位數(shù)。(不要求寫過程)
(3) 從成績是80分以上(包括80分)的學(xué)生中選兩人,求他們在同一分?jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)志愿者協(xié)會有6名男同學(xué),4名女同學(xué),在這10名同學(xué)中,3名同學(xué)來自數(shù)學(xué)學(xué)院,其余7名同學(xué)來自物理﹑化學(xué)等其他互不相同的七個學(xué)院,現(xiàn)從這10名同學(xué)中隨機(jī)選取3名同學(xué),到希望小學(xué)進(jìn)行支教活動(每位同學(xué)被選到的可能性相同).
(1)求選出的3名同學(xué)是來自互不相同學(xué)院的概率;
(2)設(shè)為選出的3名同學(xué)中女同學(xué)的人數(shù),求隨機(jī)變量的分布列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com