【題目】已知函數(shù)f(x)=cos2ωx﹣sin2ωx+2 cosωxsinωx,其中ω>0,若f(x)相鄰兩條對(duì)稱軸間的距離不小于
(1)求ω的取值范圍及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,a= ,b+c=3,當(dāng)ω最大時(shí),f(A)=1,求sinBsinC的值.

【答案】
(1)解:由題意得,f(x)=cos2ωx﹣sin2ωx+2 cosωxsinωx

=cos2ωx+ sin2ωx=

由ω>0得,函數(shù)f(x) 的周期T= = ,

∵f(x)相鄰兩條對(duì)稱軸間的距離不小于 ,

,則 ,解得0<ω≤1,

∴ω的取值范圍是(0,1].

得,

,

∴f(x)的單調(diào)遞增區(qū)間為


(2)解:由(1)可知ω的最大值為1,

∴f(x)= ,由f(A)=1得 ,

由0<A<π得 ,∴ ,解得A= ,

由余弦定理得cosA= = ,

把a(bǔ)= 代入化簡(jiǎn)得,b2+c2﹣bc=3,

又b+c=3聯(lián)立解得bc=2,

由正弦定理知 =2R(R為△ABC的外接圓半徑),

又2R= = =2,∴sinB= ,sinC= ,

∴sinBsinC=


【解析】(1)利用二倍角的正弦公式、余弦公式,兩角和的正弦公式化簡(jiǎn)解析式,由三角函數(shù)的周期公式表示出,f(x)的最小正周期,結(jié)合條件列出不等式求出ω的范圍,由正弦函數(shù)的增區(qū)間求出f(x)的遞增區(qū)間;(2)由(1)化簡(jiǎn)f(A)=1,由A的范圍和特殊角的三角函數(shù)值求出A,由條件和余弦定理求出bc的值,由正弦定理和條件求出sinB、sinC,即可求出sinBsinC的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大學(xué)生小王自主創(chuàng)業(yè),在鄉(xiāng)下承包了一塊耕地種植某種水果,每季投入2萬元,根據(jù)以往的經(jīng)驗(yàn),每季收獲的此種水果能全部售完,且水果的市場(chǎng)價(jià)格和這塊地上的產(chǎn)量具有隨機(jī)性,互不影響,具體情況如表:

(Ⅰ)設(shè)表示在這塊地種植此水果一季的利潤(rùn),求的分布列及期望;

(Ⅱ)在銷售收入超過5萬元的情況下,利潤(rùn)超過5萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,甲船在A處,乙船在A處的南偏東45°方向,距A有9n mile并以20n mile/h的速度沿南偏西15°方向航行,若甲船以28n mile/h的速度航行,應(yīng)沿什么方向,用多少h能盡快追上乙船?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.二進(jìn)制數(shù)110102化為八進(jìn)制數(shù)為428
B.若扇形圓心角為2弧度,且扇形弧所對(duì)的弦長(zhǎng)為2,則這個(gè)扇形的面積為
C.用秦九韶算法計(jì)算多項(xiàng)式f(x)=3x6+5x4+6x3﹣4x﹣5當(dāng)x=3時(shí)的值時(shí),v1=3v0+5=32
D.正切函數(shù)在定義域內(nèi)為單調(diào)增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司在迎新年晚會(huì)上舉行抽獎(jiǎng)活動(dòng),有甲、乙兩個(gè)抽獎(jiǎng)方案供員工選擇.

方案甲:?jiǎn)T工最多有兩次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)的中獎(jiǎng)率均為,第一次抽獎(jiǎng),若未中獎(jiǎng),則抽獎(jiǎng)結(jié)束,若中獎(jiǎng),則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎(jiǎng)。規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎(jiǎng)金,不進(jìn)行第二次抽獎(jiǎng);若正面朝上,員工則須進(jìn)行第二次抽獎(jiǎng),且在第二次抽獎(jiǎng)中,若中獎(jiǎng),則獲得1000元;若未中獎(jiǎng),則所獲得獎(jiǎng)金為0元.

方案乙:?jiǎn)T工連續(xù)三次抽獎(jiǎng),每次中獎(jiǎng)率均為,每次中獎(jiǎng)均可獲得獎(jiǎng)金400元.

(1)求某員工選擇方案甲進(jìn)行抽獎(jiǎng)所獎(jiǎng)金(元)的分布列;

(2)試比較某員工選擇方案乙與選擇方案甲進(jìn)行抽獎(jiǎng),哪個(gè)方案更劃算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,BD∩AC=0,M是線段D1O上的動(dòng)點(diǎn),過點(diǎn)M做平面ACD1的垂線交平面A1B1C1D1于點(diǎn)N,則點(diǎn)N到點(diǎn)A距離的最小值為(

A.
B.
C.
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某化工廠生產(chǎn)甲、乙兩種混合肥料,需要A,B,C三種主要原料,生產(chǎn)1扯皮甲種肥料和生產(chǎn)1車皮乙種肥料所需三種原料的噸數(shù)如表所示:

A

B

C

4

8

3

5

5

10

現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸,在此基礎(chǔ)上生產(chǎn)甲、乙兩種肥料.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤(rùn)為2萬元;生產(chǎn)1車品乙種肥料,產(chǎn)生的利潤(rùn)為3萬元、分別用x,y表示計(jì)劃生產(chǎn)甲、乙兩種肥料的車皮數(shù).
(1)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)問分別生產(chǎn)甲、乙兩種肥料,求出此最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若函數(shù), 是函數(shù)的兩個(gè)零點(diǎn), 是函數(shù)的導(dǎo)函數(shù),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,已知AB=9,BC=6, =2
(1)若四邊形ABCD是矩形,求 的值;
(2)若四邊形ABCD是平行四邊形,且 =6,求 夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案