【題目】某體校為了備戰(zhàn)明年四月份省劃艇單人雙槳比賽,對本校甲、乙兩名劃艇運動員在相同條件下進行了6次測試,測得他們劃艇最大速度單位:數(shù)據(jù)如下:

甲:27,38,30,37,35,31;

乙:33,29,38,34,28,36.

試用莖葉圖表示甲、乙兩名運動員測試的成績;

根據(jù)測試的成績,你認為派哪名運動員參加明年四月份的省劃艇單人雙槳比賽比較合適?并說明你的理由

【答案】(1)見解析;(2)見解析

【解析】

用莖葉圖能表示甲、乙兩名運動員測試的成績.
由莖葉圖求出甲、乙的平均數(shù)和甲、乙的方差,甲和乙的方差相等,甲的方差大于乙的方差,故甲的成績較穩(wěn)定,派甲運動員參加明年四月份的省劃艇單人雙槳比賽比較合適.

用莖葉圖表示甲、乙兩名運動員測試的成績?nèi)缦拢?/span>

由莖葉圖得:

甲的平均數(shù),

乙的平均數(shù),

甲的方差,

乙的方差,

甲和乙的方差相等,甲的方差大于乙的方差,

故甲的成績較穩(wěn)定,派甲運動員參加明年四月份的省劃艇單人雙槳比賽比較合適.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)x R , e 為自然對數(shù)的底數(shù)).

判斷函數(shù) f x 的單調(diào)性與奇偶性;

⑵是否存在實數(shù) t ,使不等式對一切的 x R 都成立?若存在,求出 t 的值 不存在說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)求證:當時, ;

(Ⅲ)若對任意恒成立,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有4人去旅游,旅游地點有A,B兩個地方可以選擇,但4人都不知道去哪里玩,于是決定通過擲一枚質(zhì)地均勻的骰子決定自己去哪里玩,擲出能被3整除的數(shù)時去A地,擲出其他的則去B地.
(1)求這4個人恰好有1個人去A地的概率;
(2)用X,Y分別表示這4個人中去A,B兩地的人數(shù),記ξ=XY,求隨機變量ξ的分布列與數(shù)學期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖三棱柱中,側(cè)面為菱形,

(1)證明: ;

(2)若, ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的多面體中, 平面 的中點.

(1)求證: ;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知所在的平面, 的直徑, 上一點,且中點, 中點.

(1)求證:

(2)求證: ;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且處取得極值.

(1)求函數(shù)的解析式;

(2)設(shè)函數(shù),是否存在實數(shù),使得曲線軸有兩個交點,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某小區(qū)規(guī)劃時,計劃在周邊建造一片扇形綠地,如圖所示已知扇形綠地的半徑為50米,圓心角從綠地的圓弧邊界上不同于A,B的一點P處出發(fā)鋪設(shè)兩條道路PO與均為直線段,其中PC平行于綠地的邊界其中

時,求所需鋪設(shè)的道路長:

若規(guī)劃中,綠地邊界的OC段也需鋪設(shè)道路,且道路的鋪設(shè)費用均為每米100元,當變化時,求鋪路所需費用的最大值精確到1元

查看答案和解析>>

同步練習冊答案