【題目】焦點在x軸上的橢圓C經(jīng)過點,橢圓C的離心率為,是橢圓的左、右焦點,P為橢圓上任意點.

1)求橢圓的標準方程;

2)若點M的中點(O為坐標原點),過M且平行于OP的直線l交橢圓CAB兩點,是否存在實數(shù),使得;若存在,請求出的值,若不存在,請說明理由.

【答案】(1)(2)存在滿足條件,詳見解析

【解析】

1)根據(jù)所給條件列出方程組,求解即可。

2)對直線的斜率存在與否分類討論,當斜率存在時,設直線的方程為,,聯(lián)立直線與橢圓方程,利用韋達定理,即可表示出、、,則可求。

解:(1)由已知可得,解得,

所以橢圓的標準方程為

2)若直線的斜率不存在時,,

所以;

當斜率存在時,設直線的方程為,

聯(lián)立直線與橢圓方程,消去y,得,

所以

因為,設直線的方程為,

聯(lián)立直線與橢圓方程,消去,得,解得

,

同理,,

因為,

,故,存在滿足條件,

綜上可得,存在滿足條件.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.現(xiàn)有如下兩種圖象變換方案:

方案1:將函數(shù)的圖像上所有點的橫坐標變?yōu)樵瓉淼囊话,縱坐標不變,再將所得圖象向左平移個單位長度;

方案2:將函數(shù)的圖象向左平移個單位長度,再將所得圖象上所有點的橫坐標變?yōu)樵瓉淼囊话,縱坐標不變.

請你從中選擇一種方案,確定在此方案下所得函數(shù)的解析式,并解決如下問題:

1)畫出函數(shù)在長度為一個周期的閉區(qū)間上的圖象;

2)請你研究函數(shù)的定義域,值域,周期性,奇偶性以及單調(diào)性,并寫出你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù)是定義域為的奇函數(shù).

1)求實數(shù)的值;

2)若,不等式上恒成立,求實數(shù)的取值范圍;

3)若,且函數(shù)上最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓x2+y2=8內(nèi)有一點P0-12),AB為過點P0且傾斜角為α的弦.

1)當α=時,求AB的長;

2)當弦AB被點P0平分時,寫出直線AB的方程(用直線方程的一般式表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】費馬點是指三角形內(nèi)到三角形三個頂點距離之和最小的點。當三角形三個內(nèi)角均小于時,費馬點與三個頂點連線正好三等分費馬點所在的周角,即該點所對的三角形三邊的張角相等均為。根據(jù)以上性質(zhì),函數(shù)的最小值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A. “f(0)”是“函數(shù)f(x)是奇函數(shù)”的充要條件

B. p:,,則,

C. “若,則”的否命題是“若,則

D. 為假命題,則p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國南北朝時期的數(shù)學家祖暅提出體積的計算原理(祖暅原理):“冪勢既同,則積不容異”,“勢”即是高,“冪”是面積.意思是:如果兩等高的幾何體在同高處所截得兩幾何體的截面積恒等,那么這兩個幾何體的體積相等.已知焦點在x軸上的雙曲線C的離心率e=,焦點到其漸近線的距離為2.直線y=0與y=2在第一象限內(nèi)與雙曲線C及其漸近線圍成如圖所示的圖形OABN,則它繞y軸旋轉(zhuǎn)一圈所得幾何體的體積為___________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某次投籃測試中,有兩種投籃方案:方案甲:先在A點投籃一次,以后都在B點投籃;方案乙:始終在B點投籃.每次投籃之間相互獨立.某選手在A點命中的概率為,命中一次記3分,沒有命中得0分;在B點命中的概率為,命中一次記2分,沒有命中得0分,用隨機變量表示該選手一次投籃測試的累計得分,如果的值不低于3分,則認為其通過測試并停止投籃,否則繼續(xù)投籃,但一次測試最多投籃3.

(1)若該選手選擇方案甲,求測試結(jié)束后所得分的分布列和數(shù)學期望.

(2)試問該選手選擇哪種方案通過測試的可能性較大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)有甲、乙兩套設備生產(chǎn)同一種產(chǎn)品,為了檢測兩套設備的生產(chǎn)質(zhì)量情況,隨機從兩套設備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本,檢測一項質(zhì)量指標值,若該項質(zhì)量指標值落在內(nèi),則為合格品,否則為不合格品. 表1是甲套設備的樣本的頻數(shù)分布表,圖1是乙套設備的樣本的頻率分布直方圖.

表1:甲套設備的樣本的頻數(shù)分布表

質(zhì)量指標值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

頻數(shù)

1

4

19

20

5

1

圖1:乙套設備的樣本的頻率分布直方圖

(1)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與甲、乙兩套設備的選擇有關(guān);

        甲套設備

        乙套設備

        合計

        合格品

        不合格品

        合計

        ,求的期望.

        附:

        P(K2k0)

        0.15

        0.10

        0.050

        0.025

        0.010

        k0

        2.072

        2.706

        3.841

        5.024

        6.635

        .

        查看答案和解析>>

        同步練習冊答案