【題目】已知圓經過兩點,,且圓心在直線:上.
(1)求圓的方程;
(2)設圓與軸相交于、兩點,點為圓上不同于、的任意一點,直線、交軸于、點.當點變化時,以為直徑的圓是否經過圓內一定點?請證明你的結論.
科目:高中數學 來源: 題型:
【題目】小張舉辦了一次抽獎活動.顧客花費3元錢可獲得一次抽獎機會.每次抽獎時,顧客從裝有1個黑球,3個紅球和6個白球(除顏色外其他都相同)的不透明的袋子中依次不放回地摸出3個球,根據摸出的球的顏色情況進行兌獎.顧客中一等獎,二等獎,三等獎,四等獎時分別可領取的獎金為元,10元,5元,1元.若經營者小張將顧客摸出的3個球的顏色分成以下五種情況:個黑球2個紅球;個紅球;恰有1個白球;恰有2個白球;個白球,且小張計劃將五種情況按發(fā)生的機會從小到大的順序分別對應中一等獎,中二等獎,中三等獎,中四等獎,不中獎.
(1)通過計算寫出中一至四等獎分別對應的情況(寫出字母即可);
(2)已知顧客摸出的第一個球是紅球,求他獲得二等獎的概率;
(3)設顧客抽一次獎小張獲利元,求變量的分布列;若小張不打算在活動中虧本,求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為=(>0),過點的直線的參數方程為(t為參數),直線與曲線C相交于A,B兩點.
(Ⅰ)寫出曲線C的直角坐標方程和直線的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過拋物線的焦點的直線與拋物線交于兩點,且,拋物線的準線與軸交于,于點,且四邊形的面積為,過的直線交拋物線于兩點,且,點為線段的垂直平分線與軸的交點,則點的橫坐標的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱中,四邊形為菱形,,平面平面,在線段上移動,為棱的中點.
(1)若為線段的中點,為中點,延長交于,求證:平面;
(2)若二面角的平面角的余弦值為,求點到平面的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數圖象相鄰兩條對稱軸之間的距離為,將函數的圖象向左平移個單位,得到的圖象關于軸對稱,則( )
A. 函數的周期為 B. 函數圖象關于點對稱
C. 函數圖象關于直線對稱 D. 函數在上單調
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com