【題目】離心率為的橢圓經(jīng)過點(diǎn),是坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓恒有兩個(gè)交點(diǎn),且?若存在,求出該圓的方程,并求的取值范圍;若不存在,請(qǐng)說明理由.
【答案】(1);
(2)存在,理由見解析;圓的方程為;.
【解析】
(1)利用離心率和橢圓所過點(diǎn)聯(lián)立方程組可求橢圓的方程;
(2)先假設(shè)存在符合要求的圓,利用求出圓的切線,結(jié)合弦長(zhǎng)公式表示出,利用基本不等式求解范圍.
(1)因?yàn)闄E圓經(jīng)過點(diǎn),所以;
又離心率為,所以,結(jié)合可得,
所以橢圓的方程為.
(2)假設(shè)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓恒有兩個(gè)交點(diǎn),且,設(shè)圓的切線方程為,.
聯(lián)立得,
即.
因?yàn)?/span>,所以,即,
所以,即;
因?yàn)閳A的切線方程為,所以圓的半徑為,,所求圓的方程為.
由及可得,即或;
當(dāng)圓的切線斜率不存在時(shí),切線方程為,切線與橢圓的交點(diǎn)為或者,均滿足.
綜上可知,存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓恒有兩個(gè)交點(diǎn),且.
因?yàn)?/span>
所以
當(dāng)時(shí),由于,所以,當(dāng)且僅當(dāng)時(shí),取到最大值3;
當(dāng)時(shí),;
當(dāng)斜率不存在時(shí),直線與橢圓交于或者此時(shí).
綜上可知,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著我國(guó)汽車消費(fèi)水平的提高,二手車流通行業(yè)得到迅猛發(fā)展.某汽車交易市場(chǎng)對(duì)2017年成交的二手車交易前的使用時(shí)間(以下簡(jiǎn)稱“使用時(shí)間”)進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如圖1.
圖1 圖2
(1)記“在年成交的二手車中隨機(jī)選取一輛,該車的使用年限在”為事件,試估計(jì)的概率;
(2)根據(jù)該汽車交易市場(chǎng)的歷史資料,得到散點(diǎn)圖如圖2,其中(單位:年)表示二手車的使用時(shí)間,(單位:萬元)表示相應(yīng)的二手車的平均交易價(jià)格.由散點(diǎn)圖看出,可采用作為二手車平均交易價(jià)格關(guān)于其使用年限的回歸方程,相關(guān)數(shù)據(jù)如下表(表中,):
①根據(jù)回歸方程類型及表中數(shù)據(jù),建立關(guān)于的回歸方程;
②該汽車交易市場(chǎng)對(duì)使用8年以內(nèi)(含8年)的二手車收取成交價(jià)格的傭金,對(duì)使用時(shí)間8年以上(不含8年)的二手車收取成交價(jià)格的傭金.在圖1對(duì)使用時(shí)間的分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值.若以2017年的數(shù)據(jù)作為決策依據(jù),計(jì)算該汽車交易市場(chǎng)對(duì)成交的每輛車收取的平均傭金.
附注:①對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為;
②參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我區(qū)的中小學(xué)辦學(xué)條件在政府的教育督導(dǎo)下,迅速得到改變.督導(dǎo)一年后.分別隨機(jī)抽查了高中(用表示)與初中(用表示)各10所學(xué)校.得到相關(guān)指標(biāo)的綜合評(píng)價(jià)得分(百分制)的莖葉圖如圖所示.則從莖葉圖可得出正確的信息為(80分及以上為優(yōu)秀)( )
①高中得分與初中得分的優(yōu)秀率相同
②高中得分與初中得分的中位數(shù)相同
③高中得分的方差比初中得分的方差大
④高中得分與初中得分的平均分相同
A.①②B.①③C.②④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司即將推車一款新型智能手機(jī),為了更好地對(duì)產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購(gòu)買該款手機(jī)是否與年齡有關(guān),現(xiàn)隨機(jī)抽取了50名市民進(jìn)行購(gòu)買意愿的問卷調(diào)查,若得分低于60分,說明購(gòu)買意愿弱;若得分不低于60分,說明購(gòu)買意愿強(qiáng),調(diào)查結(jié)果用莖葉圖表示如圖所示.
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購(gòu)買該款手機(jī)與年齡有關(guān)?
購(gòu)買意愿強(qiáng) | 購(gòu)買意愿弱 | 合計(jì) | |
20-40歲 | |||
大于40歲 | |||
合計(jì) |
(2)從購(gòu)買意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機(jī)抽取2人進(jìn)行采訪,記抽到的2人中年齡大于40歲的市民人數(shù)為,求的分布列和數(shù)學(xué)期望.
附:.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求證:;
(2)當(dāng)時(shí),若不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)若,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一款擊鼓小游戲的規(guī)則如下:每盤游戲都需擊鼓三次,每次擊鼓后要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)三次音樂獲得150分,出現(xiàn)兩次音樂獲得100分,出現(xiàn)一次音樂獲得50分,沒有出現(xiàn)音樂則獲得-300分.設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨(dú)立.
(1)若一盤游戲中僅出現(xiàn)一次音樂的概率為,求的最大值點(diǎn);
(2)以(1)中確定的作為的值,玩3盤游戲,出現(xiàn)音樂的盤數(shù)為隨機(jī)變量,求每盤游戲出現(xiàn)音樂的概率,及隨機(jī)變量的期望;
(3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了.請(qǐng)運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識(shí)分析分?jǐn)?shù)減少的原因.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(2)若函數(shù)的圖象總在函數(shù)圖象的下方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣a|+|x|(a>0).
(1)若不等式f(x)﹣| x|≥4x的解集為{x|x≤1},求實(shí)數(shù)a的值;
(2)證明:f(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)點(diǎn)為橢圓的右焦點(diǎn),圓過且斜率為的直線交圓于兩點(diǎn),交橢圓于點(diǎn)兩點(diǎn),已知當(dāng)時(shí),
(1)求橢圓的方程.
(2)當(dāng)時(shí),求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com