【題目】四棱錐中, ,且平面, , 是棱的中點.

(1)證明: 平面

(2)求二面角的余弦值.

【答案】(1)證明見解析;(2) .

【解析】試題分析:(1)中點,連接、,四邊形是平行四邊形,通過證明面ACD,來證明平面。(2)取中點,過N點做BE的平行線為y軸,NB,NA分別為x,z軸建立空間直角坐標系,由空間向量求二面角的余弦值。

試題解析:(1)取中點,連接、,

中點,∴,且.

又因為,∴.又∵,∴,∴四邊形是平行四邊形.∴,又,∴是等邊三角形,∴,∵平面, ,∴平面,∴,∴平面,∴平面.

(2)取中點,則, 平面,以為原點建立如圖所示的直角坐標系.

各點坐標為 , , .

可得, , ;

設平面的法向量,則,

設平面的法向量,則,

,

于是

注意到二面角是鈍角,因此,所求二面角的余弦值就是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的準線與軸交于點,過點作圓的兩條切線,切點為,且.

(1)求拋物線的方程;

(2)若直線是過定點的一條直線,且與拋物線交于兩點,過定點的垂線與拋物線交于兩點,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某中學舉行的物理知識競賽中,將三個年級參賽學生的成績在進行整理后分成5組,繪制出如圖所示的須率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組.已知第三小組的頻數(shù)是15.

1)求成績在50-70分的頻率是多少

2)求這三個年級參賽學生的總人數(shù)是多少:

3)求成績在80-100分的學生人數(shù)是多少

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為曲線的一個焦點, 為坐標原點,點為拋物線上任意一點,過點軸的平行線交拋物線的準線于,直線交拋物線于點.

(Ⅰ)求拋物線的方程;

(Ⅱ)若、、三個點滿足,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)當時,求函數(shù)的單調遞減區(qū)間;

(Ⅱ)若時,關于的不等式恒成立,求實數(shù)的取值范圍;

(Ⅲ)若數(shù)列滿足 ,記的前項和為,求證: .

【答案】I;(II;(III證明見解析.

【解析】試題分析:(Ⅰ)求出,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間;(Ⅱ)當時,因為,所以顯然不成立,先證明因此時, 上恒成立,再證明當時不滿足題意,從而可得結果;(III)先求出等差數(shù)列的前項和為,結合(II)可得,各式相加即可得結論.

試題解析:)由,得.所以

,解得(舍去),所以函數(shù)的單調遞減區(qū)間為 .

)由得,

時,因為,所以顯然不成立,因此.

,則,令,得.

時, , ,所以,即有.

因此時, 上恒成立.

時, , 上為減函數(shù),在上為增函數(shù),

,不滿足題意.

綜上,不等式上恒成立時,實數(shù)的取值范圍是.

III)證明:由知數(shù)列的等差數(shù)列,所以

所以

由()得, 上恒成立.

所以. 將以上各式左右兩邊分別相加,得

.因為

所以

所以.

型】解答
【/span>束】
22

【題目】已知直線, (為參數(shù), 為傾斜角).以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的直角坐標方程為.

(Ⅰ)將曲線的直角坐標方程化為極坐標方程;

(Ⅱ)設點的直角坐標為,直線與曲線的交點為、,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】樹立和踐行“綠水青山就是金山銀山,堅持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站退出了關于生態(tài)文明建設進展情況的調查,調查數(shù)據(jù)表明,環(huán)境治理和保護問題仍是百姓最為關心的熱點,參與調查者中關注此問題的約占.現(xiàn)從參與關注生態(tài)文明建設的人群中隨機選出200人,并將這200人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)求出的值;

(2)求這200人年齡的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)和中位數(shù)(精確到小數(shù)點后一位);

(3)現(xiàn)在要從年齡較小的第1,2組中用分層抽樣的方法抽取5人,再從這5人中隨機抽取3人進行問卷調查,求這2組恰好抽到2人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面, , ,

)求證: ;

)求二面角的余弦值;

(Ⅲ)若點在棱上,且平面,求線段的長

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)的導函數(shù)f '(x)的圖象如圖所示,f(-1)=f(2)=3,g(x)=(x-1)f(x),則不等式g(x)≥3x-3的解集是( )

A. [-1,1][2,+∞)B. (-∞,-1][1,2]

C. (-∞,-1][2,+∞)D. [-1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年寒假期間新冠肺炎肆虐,全國人民眾志成城抗疫情.某市要求全體市民在家隔離,同時決定全市所有學校推遲開學.某區(qū)教育局為了讓學生停課不停學,要求學校各科老師每天在網(wǎng)上授課輔導,每天共200分鐘.教育局為了了解高三學生網(wǎng)上學習情況,上課幾天后在全區(qū)高三學生中采取隨機抽樣的方法抽取了80名學生(其中男女生恰好各占一半)進行問卷調查,按男女生分為兩組,再將每組學生在線學習時間(分鐘)分為5,,,,得到如圖所示的頻率分布直方圖.全區(qū)高三學生有3000人(男女生人數(shù)大致相等),以頻率估計概率回答下列問題:

1)估計全區(qū)高三學生中網(wǎng)上學習時間不超過40分鐘的人數(shù);

2)在調查的80名高三學生且學習時間不超過40分鐘的學生中,男女生按分層抽樣的方法抽取6.若從這6人中隨機抽取2人進行電話訪談,求至少抽到1名男生的概率.

查看答案和解析>>

同步練習冊答案