【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績和物理成績之間的關(guān)系,隨機抽取高二年級20名學(xué)生某次考試成績(百分制)如下表所示:

序號

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

數(shù)學(xué)成績

95

75

80

94

92

65

67

84

98

71

67

93

64

78

77

90

57

83

72

83

物理成績

90

63

72

87

91

71

58

82

93

81

77

82

48

85

69

91

61

84

78

86

若數(shù)學(xué)成績90分(含90分)以上為優(yōu)秀,物理成績85(含85分)以上為優(yōu)秀,則有多少把握認為學(xué)生的數(shù)學(xué)成績與物理成績有關(guān)系( )

A. 95% B. 97.5% C. 99.5% D. 99.9%

【答案】C

【解析】分析:根據(jù)題意,列出列聯(lián)表,求出觀測值,根據(jù)觀測值對應(yīng)的數(shù)值得出結(jié)論.

詳解:根據(jù)題意,列出列聯(lián)表,如下;

物理優(yōu)秀

物理不優(yōu)秀

合計

數(shù)學(xué)優(yōu)秀

5

1

6

數(shù)學(xué)不優(yōu)秀

2

12

14

合計

7

13

20

,
因為觀測值對應(yīng)的數(shù)值為0.005,
所以有的把握認為學(xué)生的數(shù)學(xué)成績與物理成績之間有關(guān)系.
故選C.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C的頂點為原點,其焦點F(0,c)(c>0)到直線l:x﹣y﹣2=0的距離為 ,設(shè)P為直線l上的點,過點P作拋物線C的兩條切線PA,PB,其中A,B為切點.
(1)求拋物線C的方程;
(2)當點P(x0 , y0)為直線l上的定點時,求直線AB的方程;
(3)當點P在直線l上移動時,求|AF||BF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象如圖所示,則下列說法正確的是( )

A. 函數(shù)的周期為

B. 函數(shù)上單調(diào)遞增

C. 函數(shù)的圖象關(guān)于點對稱

D. 把函數(shù)的圖象向右平移個單位,所得圖象對應(yīng)的函數(shù)為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)棱平面,為等腰直角三角形,,且分別是的中點.

)求證:平面

)求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,求函數(shù)的極值;

(2)若在區(qū)間內(nèi)有唯一的零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某縣經(jīng)濟最近十年穩(wěn)定發(fā)展,經(jīng)濟總量逐年上升,下表是給出的部分統(tǒng)計數(shù)據(jù):

序號

2

3

4

5

年份

2008

2010

2012

2014

2016

經(jīng)濟總量(億元)

236

246

257

275

286

(1)如上表所示,記序號為,請直接寫出的關(guān)系式;

(2)利用所給數(shù)據(jù)求經(jīng)濟總量與年份之間的回歸直線方程;

(3)利用(2)中所求出的直線方程預(yù)測該縣2018年的經(jīng)濟總量.

附:對于一組數(shù)據(jù),

其回歸直線的斜率和截距的最小二乘估計分別為:

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)l為曲線C:y= 在點(1,0)處的切線.
(1)求l的方程;
(2)證明:除切點(1,0)之外,曲線C在直線l的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三個頂點為, 的中點.求:

(1) 所在直線的方程;

(2) 邊上中線所在直線的方程;

(3) 邊上的垂直平分線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中 ,為自然對數(shù)的底數(shù))

(Ⅰ)若函數(shù)無極值,求實數(shù)的取值范圍;

(Ⅱ)時,證明:

查看答案和解析>>

同步練習冊答案