【題目】在半徑為R的圓桌上擺放同樣大小的半徑為r的硬幣.要求硬幣不準(zhǔn)露出圓桌面邊緣,并且所擺硬幣彼此不能重疊.當(dāng)擺放n枚硬幣之后,圓桌上就不能再多擺放一枚這種硬幣了.求證:.

【答案】見解析

【解析】

由于n枚半徑為r的硬幣無重疊地擺放在半徑為R的圓桌面內(nèi),所以n個半徑為r的硬幣覆蓋的總面積小于半徑為R的圓面積,即有.所以.

現(xiàn)設(shè)想把n枚硬幣的半徑擴(kuò)大一倍成為半徑為2r的“加層硬幣”.則這n枚“加層硬幣”必完全覆蓋住半徑為(R - r)的圓面.如若不然的話,設(shè)在R - r為的圓面上至少有一點(diǎn)P沒被這n個半徑為2r的“加層硬幣”蓋住,則P點(diǎn)到諸半徑為r的硬幣之間的距離均大于r.所以以P為中心r為半徑的圓面可以與前面所放的n枚硬幣無重疊地放入半徑為R的圓桌面內(nèi).這與題設(shè)條件矛盾.

所以有.化簡可得.綜合可得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實(shí)施一項(xiàng)將重塑全球汽車行業(yè)的計劃.年某企業(yè)計劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場分析,全年需投入固定成本萬元,每生產(chǎn)(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.

(1)求出2018年的利潤(萬元)關(guān)于年產(chǎn)量(百輛)的函數(shù)關(guān)系式;(利潤=銷售額-成本)

(2)2018年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,則輸出S的值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人做定點(diǎn)投籃游戲,已知甲每次投籃命中的概率均為,甲投籃3次均未命中的概率為乙每次投籃命中的概率均為,乙投籃2次恰好命中1次的概率為、乙每次投籃是否命中相互之間沒有影響.

(1)若乙投籃3次,求至少命中2次的概率;

(2)若甲、乙各投籃2次,設(shè)兩人命中的總次數(shù)為,的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)求函數(shù)的定義域;

(2)判斷函數(shù)的奇偶性,并予以證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐A-BCDE,底面BCDE為直角梯形,CD⊥平面ABC,側(cè)面ABCD是等腰直角三角形,EBC=ABC=90°,BC=CD=2BE,點(diǎn)M是棱AD的中點(diǎn)

(1)求異面直線MEAB所成角的大小;

()證明:平面AED⊥平面ACD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (φ為參數(shù),0≤φ≤π),曲線C2的參數(shù)方程為 (t為參數(shù)).
(1)求C1的普通方程并指出它的軌跡;
(2)以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,射線OM:θ= 與半圓C的交點(diǎn)為O,P,與直線l的交點(diǎn)為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線a、b和平面,下列說法中正確的有______

,則;

,則;

,則;

若直線,直線,則;

若直線a在平面外,則;

直線a平行于平面內(nèi)的無數(shù)條直線,則;

若直線,那么直線a就平行于平面內(nèi)的無數(shù)條直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)業(yè)余足球運(yùn)動員共有15000人,其中男運(yùn)動員9000人,女運(yùn)動員6000人,為調(diào)查該地區(qū)業(yè)余足球運(yùn)動員每周平均踢足球占用時間的情況,采用分層抽樣的方法,收集300位業(yè)務(wù)足球運(yùn)動員每周平均踢足球占用時間的樣本數(shù)據(jù)(單位:小時)
得到業(yè)余足球運(yùn)動員每周平均踢足球所占用時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:(0,2],(2,4],(4,6],(6,8],(8,10],(10,12].
將“業(yè)務(wù)運(yùn)動員的每周平均踢足球時間所占用時間超過4小時”
定義為“熱愛足球”.
附:K2=

P(K2≥k0

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879


(1)應(yīng)收集多少位女運(yùn)動員樣本數(shù)據(jù)?
(2)估計該地區(qū)每周平均踢足球所占用時間超過4個小時的概率.
(3)在樣本數(shù)據(jù)中,有80位女運(yùn)動員“熱愛足球”.請畫出“熱愛足球與性別”列聯(lián)表,并判斷是否有99%的把握認(rèn)為“熱愛足球與性別有關(guān)”.

查看答案和解析>>

同步練習(xí)冊答案