[番茄花園1]  (本題滿(mǎn)分l4分)在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,已知

      (I)求sinC的值;

(Ⅱ)當(dāng)a=2, 2sinA=sinC時(shí),求b及c的長(zhǎng).

 

 


 [番茄花園1]1.

【答案】

 [番茄花園1] 解析:本題主要考察三角變換、正弦定理、余弦定理等基礎(chǔ)知識(shí),同事考查運(yùn)算求解能力。

(Ⅰ)解:因?yàn)閏os2C=sin2C=,及0<C<π

所以sinC=.

(Ⅱ)解:當(dāng)a=2,2sinA=sinC時(shí),由正弦定理,得

c=4

由cos2C=2cos2C-1=,J及0<C<π得

cosC=±

由余弦定理c2=a2+babcosC,得

b2±b-12=0

解得   b=或2

所以   b=            b=

       c=4      或       c=4

 

 


 [番茄花園1]18.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題(浙江卷)解析版(文) 題型:選擇題

 [番茄花園1] 設(shè)O為坐標(biāo)原點(diǎn),,是雙曲線(xiàn)(a>0,b>0)的焦點(diǎn),若在雙曲線(xiàn)上存在點(diǎn)P,滿(mǎn)足∠P=60°,∣OP∣=,則該雙曲線(xiàn)的漸近線(xiàn)方程為

(A)x±y=0          (B)x±y=0

(C)x±=0         (D)±y=0

 

非選擇題部分(共100分)

二,填空題:本大題共7小題,每小題4分,共28分。

 


 [番茄花園1]1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題(新課標(biāo)全國(guó)卷)解析版(文) 題型:選擇題

 [番茄花園1] 已知函數(shù)f(x)= 若a,b,c均不相等,且f(a)= f(b)= f(c),則abc的取值范圍是

(A)(1,10)  (B)(5,6)  (C)(10,12)  (D)(20,24)

 

 

二填空題:本大題共4小題,每小題5分。

 


 [番茄花園1]1.

查看答案和解析>>

同步練習(xí)冊(cè)答案