【題目】已知拋物線的焦點(diǎn)為,直線與軸的交點(diǎn)為,與的交點(diǎn)為,且.
(Ⅰ)求的方程;
(Ⅱ)設(shè)過(guò)定點(diǎn)的直線與拋物線交于,兩點(diǎn),連接并延長(zhǎng)交拋物線的準(zhǔn)線于點(diǎn),當(dāng)直線恰與拋物線相切時(shí),求直線的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是菱形,底面,分別是的中點(diǎn),,,.
(I)證明:;
(II)求直線與平面所成角的正弦值;
(III)在邊上是否存在點(diǎn),使與所成角的余弦值為,若存在,確定點(diǎn)位置;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖l,在邊長(zhǎng)為2的菱形中,,于點(diǎn),將沿折起到的位置,使,如圖2.
(1)求證:平面;
(2)求二面角的余弦值;
(3)在線段上是否存在點(diǎn),使平面平面?若存在,求的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖像過(guò)點(diǎn),且對(duì)任意的都有不等式成立.若函數(shù)有三個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是__________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求函數(shù)在上的零點(diǎn)個(gè)數(shù)(為自然對(duì)數(shù)的底數(shù));
(Ⅱ)若恰有一個(gè)零點(diǎn),求的取值集合;
(Ⅲ)若有兩零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 是邊長(zhǎng)為3的正方形,平面,,,BE與平面所成角為.
(Ⅰ)求證:平面 ;
(Ⅱ)求二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)M在線段BD上,且平面BEF,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱柱中,底面為菱形,,為中點(diǎn),在平面上的投影為直線與的交點(diǎn).
(1)求證:;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面垂直于和,是棱的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求二面角的正弦值;
(Ⅲ)在線段上是否存在一點(diǎn)使得與平面所成角的正弦值為若存在,請(qǐng)求出的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市從2014年甲、乙兩種酸奶的日銷(xiāo)售量(單位:箱)的數(shù)據(jù)中分別隨機(jī)抽取100個(gè),并按[ 0,10],(10,20],(20,30],(30,40],(40,50]分組,得到頻率分布直方圖如下:
假設(shè)甲、乙兩種酸奶獨(dú)立銷(xiāo)售且日銷(xiāo)售量相互獨(dú)立.
(1)寫(xiě)出頻率分布直方圖(甲)中的的值;記甲種酸奶與乙種酸奶日銷(xiāo)售量(單位:箱)的方差分別為,,試比較與的大;(只需寫(xiě)出結(jié)論)
(2)估計(jì)在未來(lái)的某一天里,甲、乙兩種酸奶的銷(xiāo)售量恰有一個(gè)高于20箱且另一個(gè)不高于20箱的概率;
(3)設(shè)表示在未來(lái)3天內(nèi)甲種酸奶的日銷(xiāo)售量不高于20箱的天數(shù),以日銷(xiāo)售量落入各組的頻率作為概率,求的數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com