【題目】已知曲線yx3,求:

(1)曲線在點(diǎn)P(1,1)處的切線方程;

(2)過(guò)點(diǎn)P(1,0)的曲線的切線方程.

【答案】(1)3x-y-2=0;(2)3x-y-2=0

【解析】試題分析:(1)求出y的導(dǎo)數(shù),求得切線的斜率,由點(diǎn)斜式方程可得切線的方程;
(2)設(shè)切點(diǎn)為(x0,y0),求得切線的斜率,由兩點(diǎn)的斜率公式,解方程可得x0,進(jìn)而得到切線的方程.

試題解析:

y′=3x2.

(1)當(dāng)x=1時(shí),y′=3,即在點(diǎn)P(1,1)處的切線的斜率為3,

∴切線方程為y-1=3(x-1),即3x-y-2=0.

(2)設(shè)切點(diǎn)坐標(biāo)為(x0,y0),則過(guò)點(diǎn)P的切線的斜率為3x,

由直線的點(diǎn)斜式,得切線方程yx=3x (xx0),

即3xxy-2x=0.

P(1,0)在切線上,∴3x-2x=0.

解之得x0=0或x0.

當(dāng)x0=0時(shí),切線方程為y=0.

當(dāng)x0時(shí),切線方程為27x-4y-27=0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1是某公交公司1路車從起點(diǎn)站A站途經(jīng)B站和C站,最終到達(dá)終點(diǎn)站D站的格點(diǎn)站路線圖.(8×8的格點(diǎn)圖是由邊長(zhǎng)為1的小正方形組成)

(1)求1路車從A站到D站所走的路程(精確到0.1);
(2)在圖2、圖3和圖4的網(wǎng)格中各畫出一種從A站到D站的路線圖.(要求:①與圖1路線不同、路程相同;②途中必須經(jīng)過(guò)兩個(gè)格點(diǎn)站;③所畫路線圖不重復(fù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5kg,乙材料1kg,用5個(gè)工時(shí);生產(chǎn)一件產(chǎn)品B需要甲材料0.5kg,乙材料0.3kg,用3個(gè)工時(shí).生產(chǎn)一件產(chǎn)品A的利潤(rùn)為2100元,生產(chǎn)一件產(chǎn)品B的利潤(rùn)為900元.該企業(yè)現(xiàn)有甲材料150kg,乙材料90kg,求在不超過(guò)600個(gè)工時(shí)的條件下,生產(chǎn)產(chǎn)品A和產(chǎn)品B的利潤(rùn)之和的最大值(元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等比數(shù)列中,已知,且成等差數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面,四邊形是直角梯形,.

(1)求二面角的余弦值;

(2)設(shè)是棱上一點(diǎn),的中點(diǎn),若與平面所成角的正弦值為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【河南省豫南九校(中原名校)2017屆高三下學(xué)期質(zhì)量考評(píng)八數(shù)學(xué)(文)】已知雙曲線的左右兩個(gè)頂點(diǎn)是, ,曲線上的動(dòng)點(diǎn)關(guān)于軸對(duì)稱,直線 交于點(diǎn),

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)點(diǎn),軌跡上的點(diǎn)滿足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和,且2的等差中項(xiàng).

1)求數(shù)列的通項(xiàng)公式;

2)若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙和點(diǎn).過(guò)作⊙的兩條切線,切點(diǎn)分別為且直線的方程為

(1)求⊙的方程;

(2)設(shè)為⊙上任一點(diǎn),過(guò)點(diǎn)向⊙引切線,切點(diǎn)為, 試探究:平面內(nèi)是否存在一定點(diǎn),使得為定值?若存在,請(qǐng)舉出一例,并指出相應(yīng)的定值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】運(yùn)行如圖的程序,如果輸入的m,n的值分別是24和15,記錄輸出的i和m的值.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(i﹣4,m),圓C的圓心在直線l:y=2x﹣4上.

(1)若圓C的半徑為1,且圓心C在直線y=x﹣1上,過(guò)點(diǎn)A作圓C的切線,求切線的方程;
(2)若圓C上存在點(diǎn)M,使∠OMA=90°,求圓C的半徑r的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案