【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知 ,sinA= . (Ⅰ)求sinC的值;
(II)設(shè)D為AC的中點(diǎn),若△ABC的面積為8 ,求BD的長.

【答案】解:在△ABC中,∵ , ∴cbcosA=cacosB,
即bcosA=acosB,
sinBcosA=sinAcosB,
sin(A﹣B)=0,
∴A=B,
∵sinA=
∴sinC=sin(π﹣2A)=sin(2A)=2sinAcosA=2× × =
(Ⅱ)設(shè)AC=BC=m,
∵△ABC的面積為8 ,
× = ,
m=3 ,cosC=
根據(jù)余弦定理得出:
BD2=
BD=
【解析】(Ⅰ)利用向量的數(shù)量積和正玄定理得出sinBcosA=sinAcosB,根據(jù)三角公式得出A=B,根據(jù)誘導(dǎo)公式求解即可.(Ⅱ)利用面積公式,以及余弦定理求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自2016年1月1日起,我國全面二孩政策正式實(shí)施,這次人口與生育政策的歷史性調(diào)整,使得“要不要再生一個(gè)”“生二孩能休多久產(chǎn)假”等成為千千萬萬個(gè)家庭在生育決策上避不開的話題.為了解針對(duì)產(chǎn)假的不同安排方案形成的生育意愿,某調(diào)查機(jī)構(gòu)隨機(jī)抽取了200戶有生育二胎能力的適齡家庭進(jìn)行問卷調(diào)查,得到如下數(shù)據(jù):

產(chǎn)假安排(單位:周)

14

15

16

17

18

有生育意愿家庭數(shù)

4

8

16

20

26


(1)若用表中數(shù)據(jù)所得的頻率代替概率,面對(duì)產(chǎn)假為14周與16周,估計(jì)某家庭有生育意愿的概率分別為多少?
(2)假設(shè)從5種不同安排方案中,隨機(jī)抽取2種不同安排分別作為備選方案,然后由單位根據(jù)單位情況自主選擇. ①求兩種安排方案休假周數(shù)和不低于32周的概率;
②如果用ξ表示兩種方案休假周數(shù)和.求隨機(jī)變量ξ的分布及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,設(shè)命題:函數(shù)上單調(diào)遞減,命題:對(duì)任意實(shí)數(shù),不等式恒成立.

(1)寫出命題的否定,并求非為真時(shí),實(shí)數(shù)的取值范圍;

(2)如果命題“”為真命題,且“”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)要從高一年級(jí)甲、乙兩個(gè)班級(jí)中選擇一個(gè)班參加市電視臺(tái)組織的“環(huán)保知識(shí)競(jìng)賽”.該校對(duì)甲、乙兩班的參賽選手(每班7人)進(jìn)行了一次環(huán)境知識(shí)測(cè)試,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖所示,其中甲班學(xué)生的平均分是85分,乙班學(xué)生成績的中位數(shù)是85.

(1)求的值;

(2)根據(jù)莖葉圖,求甲、乙兩班同學(xué)成績的方差的大小,并從統(tǒng)計(jì)學(xué)角度分析,該校應(yīng)選擇甲班還是乙班參賽.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)定義域?yàn)镽,f(﹣x)=f(x),f(x)=f(2﹣x),當(dāng)x∈[0,1]時(shí),f(x)=x3 , 則函數(shù)g(x)=|cos(πx)|﹣f(x)在區(qū)間[﹣ , ]上的所有零點(diǎn)的和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直棱柱中,已知,設(shè)中點(diǎn)為中點(diǎn)為

Ⅰ)求證:平面

Ⅱ)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)= x2﹣lnx在其定義域的一個(gè)子區(qū)間(k﹣1,k+1)上不是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍是(
A.(1,2)
B.[1,2)
C.[0,2)
D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了加強(qiáng)環(huán)保建設(shè),提高社會(huì)效益和經(jīng)濟(jì)效益,某市計(jì)劃用若干年時(shí)間更換一萬輛燃油型公交車。每更換一輛新車,則淘汰一輛舊車,更換的新車為電力型車和混合動(dòng)力型車。今年初投入了電力型公交車輛,混合動(dòng)力型公交車輛,計(jì)劃以后電力型車每年的投入量比上一年增加,混合動(dòng)力型車每年比上一年多投入輛.設(shè)、分別為第年投入的電力型公交車、混合動(dòng)力型公交車的數(shù)量,設(shè)、分別為年里投入的電力型公交車、混合動(dòng)力型公交車的總數(shù)量。

1)求、,并求年里投入的所有新公交車的總數(shù);

2)該市計(jì)劃用年的時(shí)間完成全部更換,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù),其中.

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)若方程有三個(gè)互不相同的根0,,,其中.

①是否存在實(shí)數(shù),使得成立?若存在,求出的值;若不存在,說明理由.

②若對(duì)任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案