【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知射線lθ與曲線Ct為參數(shù))相交于A,B兩點(diǎn).

1)寫出射線l的參數(shù)方程和曲線C的直角坐標(biāo)方程;

2)求線段AB中點(diǎn)的極坐標(biāo).

【答案】1(,t為參數(shù)),y=(x22;(2)(.

【解析】

1)利用極坐標(biāo)化直角的公式,以及代入消參法進(jìn)行轉(zhuǎn)化即可;

2)在直角坐標(biāo)系下求解中點(diǎn)坐標(biāo),再轉(zhuǎn)化為極坐標(biāo)即可.

1)由題意得射線l的直角坐標(biāo)方程為yxx≥0),

則射線l的參數(shù)方程為t≥0,t為參數(shù)),

曲線C的直角坐標(biāo)方程為y=(x22.

2)由

∴可令A1,1),B4,4),

∴線段AB中點(diǎn)的直角坐標(biāo)為(),

∴線段AB中點(diǎn)的極坐標(biāo)為(,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè),經(jīng)過市場(chǎng)調(diào)查,生產(chǎn)一小型電子產(chǎn)品需投入固定成本2萬元,每生產(chǎn)x萬件,需另投入流動(dòng)成本C(x)萬元,當(dāng)年產(chǎn)量小于7萬件時(shí),C(x)=x2+2x(萬元);當(dāng)年產(chǎn)量不小于7萬件時(shí),C(x)=6x+1nx+﹣17(萬元).已知每件產(chǎn)品售價(jià)為6元,假若該同學(xué)生產(chǎn)的產(chǎn)M當(dāng)年全部售完.

(1)寫出年利潤P(x)(萬元)關(guān)于年產(chǎn)量x(萬件)的函數(shù)解析式;(注:年利潤=年銷售收人﹣固定成本﹣流動(dòng)成本

(2)當(dāng)年產(chǎn)量約為多少萬件時(shí),該同學(xué)的這一產(chǎn)品所獲年利潤最大?最大年利潤是多少?(取e3≈20)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊三棱錐形木塊,各面均是銳角三角形,其中面內(nèi)有一點(diǎn).

1)若要在面內(nèi)過點(diǎn)畫一條線段,其中點(diǎn)在線段上,點(diǎn)在線段上,且滿足垂直,該如何求作?請(qǐng)?jiān)趫D中畫出線段并說明畫法,不必證明;

2)經(jīng)測(cè)量,,,若恰為三角形的重心,為(1)中所求線段,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別是,,點(diǎn),若的內(nèi)切圓的半徑與外接圓的半徑的比是.

1)求橢圓的方程;

2)設(shè)為橢圓的右頂點(diǎn),設(shè)圓,不與軸垂直的直線交于、兩點(diǎn),原點(diǎn)到直線的距離為,線段分別與橢圓交于、,,垂足為.設(shè),的面積為,的面積為.

試確定的關(guān)系式;、

的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]在平面坐標(biāo)系中xOy中,已知直線l的參考方程為(t為參數(shù)),曲線C的參數(shù)方程為(s為參數(shù))。設(shè)p為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l的距離的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了20171月至201912月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是( 。

A.年接待游客量逐年增加

B.各年的月接待游客量高峰期大致在8

C.20171月至12月月接待游客量的中位數(shù)為30萬人

D.各年1月至6月的月接待游客量相對(duì)于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天氣預(yù)報(bào)說,今后三天每天下雨的概率相同,現(xiàn)用隨機(jī)模擬的方法預(yù)測(cè)三天中有兩天下雨的概率,用骰子點(diǎn)數(shù)來產(chǎn)生隨機(jī)數(shù).依據(jù)每天下雨的概率,可規(guī)定投一次骰子出現(xiàn)1點(diǎn)和2點(diǎn)代表下雨;投三次骰子代表三天;產(chǎn)生的三個(gè)隨機(jī)數(shù)作為一組.得到的10組隨機(jī)數(shù)如下:613,265114,236,561435,443251,154,353.則在此次隨機(jī)模擬試驗(yàn)中,每天下雨的概率的近似值是__________,三天中有兩天下雨的概率的近似值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一旅游景區(qū)供游客行走的路線圖,假設(shè)從進(jìn)口開始到出口,每遇到一個(gè)岔路口,每位游客選擇其中一條道路行進(jìn)是等可能的.現(xiàn)有甲、乙、丙、丁共名游客結(jié)伴到旅游景區(qū)游玩,他們從進(jìn)口的岔路口就開始選擇道路自行游玩,并按箭頭所指路線行走,最后到出口集中,設(shè)點(diǎn)是其中的一個(gè)交叉路口點(diǎn).

(1)求甲經(jīng)過點(diǎn)的概率;

(2)設(shè)這名游客中恰有名游客都是經(jīng)過點(diǎn),求隨機(jī)變量的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一款擊鼓小游戲的規(guī)則如下:每盤游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得分).設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨(dú)立.

1)設(shè)每盤游戲獲得的分?jǐn)?shù)為,求的分布列;

2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?

3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了.請(qǐng)運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識(shí)分析分?jǐn)?shù)減少的原因.

查看答案和解析>>

同步練習(xí)冊(cè)答案