【題目】已知函數(shù),若在處的切線為.
(Ⅰ)求實數(shù),的值;
(Ⅱ)若不等式對任意恒成立,求的取值范圍;
(Ⅲ)設(shè)其中,證明:
【答案】(Ⅰ);(Ⅱ);(Ⅲ)證明見解析
【解析】
(Ⅰ)求出,,建立方程,求解即可得到結(jié)論;
(Ⅱ)結(jié)合(Ⅰ)中的結(jié)論,將問題轉(zhuǎn)化為對任意恒成立,令
,而是偶函數(shù),只需時,恒成立,注意,只需在單調(diào)遞增即可,若存在單調(diào)遞減,則不恒成立,轉(zhuǎn)化為研究在單調(diào)性,即可求解;
(Ⅲ)由,利用(Ⅱ)的結(jié)論,可得,.進而得到
,將分別用,代入得到個不等式,相加即可證明結(jié)論.
(Ⅰ)由,得;
由,得.
根據(jù)題意可得,解得;
(Ⅱ)解法一:由不等式對任意恒成立知恒成立,令,
顯然為偶函數(shù),故當時,恒成立.
,令,
,令,
顯然為上的增函數(shù),故,
即在上單調(diào)遞增,.
①當,即時,,
則有在上單調(diào)遞增,故,
則在上單調(diào)遞增,故,符合題意;
②當,即時,因為,
故存在,使得,
故在上單調(diào)遞減,在上單調(diào)遞增,
當時,,
故在上單謂遞減,故與矛盾.
綜上,.
解法二:由不等式對任意恒成立,
知恒成立,當時,不等式成立;
當時,,令,
由于為偶函數(shù),故只需考慮的情況即可.
當時,.
令,,
令,,
當時,,故在上單調(diào)遞增,
故.
因此當時,,故在上單調(diào)遞增,
即有,故,
所以在上單調(diào)遞增,由洛必達法則有,故.
(Ⅲ)解法一:
,
由(Ⅱ),當且僅當時,等號成立;,當且僅當時,等號成立.故,當且僅當時等號成立.
因此有,
,
以上個式子相加得
.
解法二:由(Ⅱ)知,
當且僅當時等號同時成立.
故,
,
以上個式子相加得
.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,并且經(jīng)過點.
(1)求橢圓的標準方程;
(2)一條斜率為的直線交橢圓于,兩點(不同于),直線和的斜率分別為,,滿足,試判斷直線是否經(jīng)過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,直線與圓相切.
(1)求橢圓的方程;
(2)過點的直線與橢圓交于不同兩點,線段的中垂線為,求直線在軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是國家統(tǒng)計局于2020年1月9日發(fā)布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環(huán)比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環(huán)比)根據(jù)該折線圖,下列結(jié)論錯誤的是( )
A.2019年12月份,全國居民消費價格環(huán)比持平
B.2018年12月至2019年12月全國居民消費價格環(huán)比均上漲
C.2018年12月至2019年12月全國居民消費價格同比均上漲
D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正項數(shù)列中,,點在拋物線上.數(shù)列中,點在經(jīng)過點,以為方向向量的直線上.
(1)求數(shù)列,的通項公式;
(2)若,問是否存在,使得成立?若存在,求出的值;若不存在,說明理由;
(3)對任意的正整數(shù),不等式成立,求正數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com