【題目】在貫徹中共中央國務(wù)院關(guān)于精準(zhǔn)扶貧政策的過程中,某單位定點幫扶甲、乙兩個村各50戶貧困戶.為了做到精準(zhǔn)幫扶,工作組對這100戶村民的年收入情況、勞動能力情況、子女受教育情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo)和,制成下圖,其中“”表示甲村貧困戶,“”表示乙村貧困戶.若,則認(rèn)定該戶為“絕對貧困戶”,若,則認(rèn)定該戶為“相對貧困戶”,若,則認(rèn)定該戶為“低收入戶”;若,則認(rèn)定該戶為“今年能脫貧戶”,否則為“今年不能脫貧戶”.
(1)從乙村的50戶中隨機(jī)選出一戶,求該戶為“絕對貧困戶”的概率;
(2)從甲村所有“今年不能脫貧的非絕對貧困戶”中任選2戶,求選出的2戶均為“低收入戶”的概率;
(3)試比較這100戶中,甲、乙兩村指標(biāo)的方差的大。ㄖ恍鑼懗鼋Y(jié)論).
【答案】(1);(2);(3)甲村指標(biāo)的方差大于乙村指標(biāo)的方差.
【解析】試題分析:(1)由圖知,在乙村戶中,指標(biāo)的有戶,根據(jù)古典概型概率公式可得結(jié)果;(2)利用列舉法可得,所有可能的結(jié)果組成的基本事件有個,其中兩戶均為“低收入戶”的事件共有個,根據(jù)古典概型概率公式可得選出的戶均為“低收入戶”的概率;(3) 由圖可知,這戶中甲村指標(biāo)的方差大于乙村指標(biāo)的方差..
試題解析:(1)由圖知,在乙村50戶中,指標(biāo)的有15戶,
所以,從乙村50戶中隨機(jī)選出一戶,該戶為“絕對貧困戶”的概率為.
(2)甲村“今年不能脫貧的非絕對貧困戶”共有6戶,其中“相對貧困戶”有3戶,分別記為, , .“低收入戶”有3戶,分別記為, , ,所有可能的結(jié)果組成的基本事件有:
, , , , ,
, , , ,
, , ,
, , .
共15個,其中兩戶均為“低收入戶”的共有3個,
所以,所選2戶均為“低收入戶”的概率.
(3)由圖可知,這100戶中甲村指標(biāo)的方差大于乙村指標(biāo)的方差.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnxx2,g(x)x2+x,m∈R,令F(x)=f(x)+g(x).
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若關(guān)于x的不等式F(x)≤mx﹣1恒成立,求整數(shù)m的最小值;
(Ⅲ)若m=﹣1,且正實數(shù)x1,x2滿足F(x1)=﹣F(x2),求證:x1+x21.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為, , 分別為橢圓的上頂點和右焦點, 的面積為,直線與橢圓交于另一個點,線段的中點為.
(1)求直線的斜率;
(2)設(shè)平行于的直線與橢圓交于不同的兩點, ,且與直線交于點,求證:存在常數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù).
(1)若,求的值;
(2)若是函數(shù)的一個零點,求函數(shù)在區(qū)間的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“搜索指數(shù)”是網(wǎng)民通過搜索引擎,以每天搜索關(guān)鍵詞的次數(shù)為基礎(chǔ)所得到的統(tǒng)計指標(biāo).“搜索指數(shù)”越大,表示網(wǎng)民對該關(guān)鍵詞的搜索次數(shù)越多,對該關(guān)鍵詞相關(guān)的信息關(guān)注度也越高.下圖是2017年9月到2018年2月這半年中,某個關(guān)鍵詞的搜索指數(shù)變化的走勢圖.
根據(jù)該走勢圖,下列結(jié)論正確的是( )
A. 這半年中,網(wǎng)民對該關(guān)鍵詞相關(guān)的信息關(guān)注度呈周期性變化
B. 這半年中,網(wǎng)民對該關(guān)鍵詞相關(guān)的信息關(guān)注度不斷減弱
C. 從網(wǎng)民對該關(guān)鍵詞的搜索指數(shù)來看,去年10月份的方差小于11月份的方差
D. 從網(wǎng)民對該關(guān)鍵詞的搜索指數(shù)來看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點為,準(zhǔn)線為.已知點在拋物線上,點在上, 是邊長為4的等邊三角形.
(1)求的值;
(2)在軸上是否存在一點,當(dāng)過點的直線與拋物線交于、兩點時, 為定值?若存在,求出點的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,四邊形為正方形,AD∥B,平面ABC⊥平面BC,AB=AC=,AD=1,∠ABC=45°。
(1)求證:AB⊥CD;
(2)求點C到平面D的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c.滿足2acosC+bcosC+ccosB=0.
(Ⅰ)求角C的大;
(Ⅱ)若a=2,△ABC的面積為,求C的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中錯誤的是( )
A. 平面內(nèi)一個三角形各邊所在的直線都與另一個平面平行,則這兩個平面平行;
B. 若兩個平面平行,則分別位于這兩個平面的直線也互相平行;
C. 平行于同一個平面的兩個平面平行;
D. 若兩個平面平行,則其中一個平面內(nèi)的直線平行于另一個平面;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com