【題目】已知函數(shù)fx)的定義域?yàn)?/span>R,當(dāng)x0時(shí)滿(mǎn)足:①fx)﹣2f(﹣x)=0;②對(duì)任意x10,x20x1x2有(x1x2)(fx1)﹣fx2))>0恒成立:③f4)=2f2)=2,則不等式x[fx)﹣1]0的解集為_____(用區(qū)間表示)

【答案】.

【解析】

根據(jù),求得f(﹣4)=1,,由可知函數(shù)fx)在(0,+∞)上為增函數(shù),結(jié)合題意,可以判斷出fx)在(﹣,0)上為減函數(shù),將不等式x[fx)﹣1]0轉(zhuǎn)化為不等式組,從而確定出結(jié)果.

根據(jù)題意,當(dāng)x0時(shí)滿(mǎn)足fx)﹣2f(﹣x)=0,即fx)=2f(﹣x),

又由f4)=2f2)=2,則f(﹣4)=1,;

若對(duì)任意x10,x20,x1x2有(x1x2)(fx1)﹣fx2))>0恒成立,則fx)在(0,+∞)上為增函數(shù),

設(shè)x1x20,則﹣x1>﹣x20,有,

,所以

fx)在(﹣,0)上為減函數(shù),

x[fx)﹣1]0;

分析可得:﹣4x0,即不等式的解集為,

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)用五點(diǎn)法作出在長(zhǎng)度為一個(gè)周期的閉區(qū)間上的簡(jiǎn)圖;

2)寫(xiě)出的對(duì)稱(chēng)中心與單調(diào)遞增區(qū)間,并求振幅、周期、頻率、相位及初相;

3)求的最大值以及取得最大值時(shí)x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一塊邊長(zhǎng)為的正方形鐵皮,將其四個(gè)角各截去一個(gè)邊長(zhǎng)為的小正方形,然后折成一個(gè)無(wú)蓋的盒子.

(1)求出盒子的體積為自變量的函數(shù)解析式,并寫(xiě)出這個(gè)函數(shù)的定義域;

(2)如果要做一個(gè)容積是的無(wú)蓋盒子,那么截去的小正方形的邊長(zhǎng)是多少(精確度0.01,結(jié)果保留一位小數(shù))?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是圓的直徑,是圓上除、外的一點(diǎn),平面,四邊形為平行四邊形,,

1)求證:平面

(2)當(dāng)三棱錐體積取最大值時(shí),求此刻點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)), ).

(1)如果是關(guān)于的不等式的解,求實(shí)數(shù)的取值范圍;

(2)判斷的單調(diào)性,并說(shuō)明理由;

(3)證明:函數(shù)存在零點(diǎn)q使得成立的充要條件是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)拋物線y22px(p0)的焦點(diǎn)F的直線交拋物線于點(diǎn)A、B,交其準(zhǔn)線l于點(diǎn)C,若|BC|2|BF|,且|AF|3,則此拋物線的方程為(  )

A.y29xB.y26x

C.y23xD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】省環(huán)保廳對(duì)、三個(gè)城市同時(shí)進(jìn)行了多天的空氣質(zhì)量監(jiān)測(cè),測(cè)得三個(gè)城市空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)共有180個(gè),三城市各自空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)個(gè)數(shù)如下表所示:

優(yōu)(個(gè))

28

良(個(gè))

32

30

已知在這180個(gè)數(shù)據(jù)中隨機(jī)抽取一個(gè),恰好抽到記錄城市空氣質(zhì)量為優(yōu)的數(shù)據(jù)的概率為0.2.

(1)現(xiàn)按城市用分層抽樣的方法,從上述180個(gè)數(shù)據(jù)中抽取30個(gè)進(jìn)行后續(xù)分析,求在城中應(yīng)抽取的數(shù)據(jù)的個(gè)數(shù);

(2)已知, ,求在城中空氣質(zhì)量為優(yōu)的天數(shù)大于空氣質(zhì)量為良的天數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示是一個(gè)正三棱臺(tái),而且下底面邊長(zhǎng)為2,上底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為1.O分別是下底面與上底面的中心.

1)求棱臺(tái)的斜高;

2)求棱臺(tái)的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,軸上的點(diǎn).

(1)過(guò)點(diǎn)作直線相切,求切線的方程;

(2)如果存在過(guò)點(diǎn)的直線與拋物線交于兩點(diǎn),且直線的傾斜角互補(bǔ),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案