【題目】在平面上給定相異兩點A,B,設P點在同一平面上且滿足,當且時,P點的軌跡是一個圓,這個軌跡最先由古希臘數(shù)學家阿波羅尼斯發(fā)現(xiàn),故我們稱這個圓為阿波羅尼斯圓,現(xiàn)有雙曲線(,),A,B為雙曲線的左、右頂點,C,D為雙曲線的虛軸端點,動點P滿足,面積的最大值為,面積的最小值為4,則雙曲線的離心率為______.
科目:高中數(shù)學 來源: 題型:
【題目】某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種,
方案一:每滿200元減50元;
方案二:每滿200元可抽獎一次.具體規(guī)則是依次從裝有3個紅球、l個白球的甲箱,裝有2個紅球、2個白球的乙箱,以及裝有1個紅球、3個白球的丙箱中各隨機摸出1個球,所得結果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)
紅球個數(shù) | 3 | 2 | 1 | 0 |
實際付款 | 半價 | 7折 | 8折 | 原價 |
(1)若兩個顧客都選擇方案二,各抽獎一次,求至少一個人獲得半價優(yōu)惠的概率;
(2)若某顧客購物金額為320元,用所學概率知識比較哪一種方案更劃算?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知中心在坐標原點O的橢圓C經(jīng)過點A(2,3),且點F(2.0)為其右焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在平行于OA的直線L,使得直線L與橢圓C有公共點,且直線OA與L的距離等于4?若存在,求出直線L的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學習小組在研究性學習中,對晝夜溫差大小與綠豆種子一天內(nèi)出芽數(shù)之間的關系進行研究.該小組在4月份記錄了1日至6日每天晝夜最高、最低溫度(如圖1),以及浸泡的100顆綠豆種子當天內(nèi)的出芽數(shù)(如圖2).
根據(jù)上述數(shù)據(jù)作出散點圖,可知綠豆種子出芽數(shù) (顆)和溫差 ()具有線性相關關系.
(1)求綠豆種子出芽數(shù) (顆)關于溫差 ()的回歸方程;
(2)假如4月1日至7日的日溫差的平均值為11,估計4月7日浸泡的10000顆綠豆種子一天內(nèi)的出芽數(shù).
附:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(a-)x2-2ax+lnx,a∈R
(1)當a=1時,求f(x)在區(qū)間[1,e]上的最大值和最小值;
(2)求g(x)=f(x)+ax在x=1處的切線方程;
(3)若在區(qū)間(1,+∞)上,f(x)<0恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會得到支付款的80%.
①當x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;
②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題表示雙曲線,命題表示橢圓.
⑴若命題為真命題,求實數(shù)的取值范圍.
⑵判斷命題為真命題是命題為真命題的什么條件(請用簡要過程說明是“充分不必要條件”、“必要不充分條件”、“充要條件”和 “既不充分也不必要條件”中的哪一個).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=(-x2+ax)ex(x∈R).
(1)當a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(-1,1)上單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com