已知定義在上的函數(shù),如果滿足:對任意,存在常數(shù),使得成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界.
下面我們來考慮兩個函數(shù):,.
(Ⅰ)當(dāng)時,求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;
(Ⅱ)若,函數(shù)在上的上界是,求的取值范圍;
(Ⅲ)若函數(shù)在上是以為上界的有界函數(shù), 求實數(shù)的取值范圍.
(Ⅰ)函數(shù)在上的值域為,函數(shù)在不是有界函數(shù);(Ⅱ);(Ⅲ).
解析試題分析:(Ⅰ)當(dāng)時,函數(shù),此時可設(shè),由,那么,所以函數(shù)可轉(zhuǎn)化成,易知在上單調(diào)遞增,從而可求出值域為;故不存在常數(shù),使成立,所以函數(shù)在上不是有界函數(shù)
(Ⅱ)先求出在上的最大值與最小值,根據(jù),再確定的大小關(guān)系,得出上界范圍;(Ⅲ)函數(shù)在上是以為上界的有界函數(shù),則在上恒成立.將問題轉(zhuǎn)化成而求得.
試題解析:(Ⅰ)當(dāng)時,
因為在上遞減,所以,即在的值域為.
故不存在常數(shù),使成立,所以函數(shù)在上不是有界函數(shù).
(Ⅱ),∵, ∴在上遞減,
∴ 即
∵,∴,∴,
∴ ,即
(Ⅲ)由題意知,在上恒成立.
,∴ 在上恒成立
∴
設(shè),,, 由得,
設(shè),, 所以在上遞減,在上的最大值為,
又,所以在上遞增,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(Ⅰ)畫出的圖象;
(Ⅱ)設(shè)A=求集合A;
(Ⅲ)方程有兩解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過40輛/千米時,車流速度為80千米/小時.研究表明:當(dāng)時,車流速度是車流密度的一次函數(shù).(1)當(dāng)時,求函數(shù)的表達(dá)式;
(2)當(dāng)車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位: 輛/小時)f ,可以達(dá)到最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)滿足,對任意都有,且.
(1)求函數(shù)的解析式;
(2)是否存在實數(shù),使函數(shù)在上為減函數(shù)?若存在,求出實數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知冪函數(shù)(m∈N+)的圖象關(guān)于y軸對稱,且在(0,+∞)上是減函數(shù),求滿足的a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
記數(shù)列{}的前n項和為為,且++n=0(n∈N*)恒成立.
(1)求證:數(shù)列是等比數(shù)列;
(2)已知2是函數(shù)f(x)=+ax-1的零點(diǎn),若關(guān)于x的不等式f(x)≥對任意n∈N﹡在x∈(-∞,λ]上恒成立,求實常數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了降低能損耗,最近上海對新建住宅的屋頂和外墻都要求建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=(0≤x≤10),若不建隔熱層,每年能消耗費(fèi)用為8萬元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能消耗費(fèi)用之和.
(1)求k的值及f(x)的表達(dá)式;
(2)隔熱層修建多厚時,總費(fèi)用f(x)達(dá)到最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
相關(guān)部門對跳水運(yùn)動員進(jìn)行達(dá)標(biāo)定級考核,動作自選,并規(guī)定完成動作成績在八分及以上的定為達(dá)標(biāo),成績在九分及以上的定為一級運(yùn)動員. 已知參加此次考核的共有56名運(yùn)動員.
(1)考核結(jié)束后,從參加考核的運(yùn)動員中隨機(jī)抽取了8人,發(fā)現(xiàn)這8人中有2人沒有達(dá)標(biāo),有3人為一級運(yùn)動員,據(jù)此請估計此次考核的達(dá)標(biāo)率及被定為一級運(yùn)動員的人數(shù);
(2)經(jīng)過考核,決定從其中的A、B、C、D、E五名一級運(yùn)動員中任選2名參加跳水比賽(這五位運(yùn)動員每位被選中的可能性相同). 寫出所有可能情況,并求運(yùn)動員E被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),,其中實數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)與的圖象只有一個公共點(diǎn)且存在最小值時,記的最小值為,求的值域;
(3)若與在區(qū)間內(nèi)均為增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com