【題目】已知是拋物線的焦點(diǎn),是拋物線上一點(diǎn),且.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的動直線交拋物線于兩點(diǎn),拋物線上是否存在一個定點(diǎn),使得以弦為直徑的圓恒過點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2)存在點(diǎn)符合題意.
【解析】
(1)利用拋物線上的點(diǎn)到焦點(diǎn)的距離與到到準(zhǔn)線的距離相等即可求出的值,即可求出拋物線方程.
(2)假設(shè)存在滿足條件的點(diǎn),依題設(shè)過點(diǎn)直線的直線的方程為,設(shè),聯(lián)立方程由根與系數(shù)的關(guān)系可得;依題可得,若能得出關(guān)于的成立的恒等式,則滿足條件的點(diǎn)存在,否則就不存在.
(1)拋物線的準(zhǔn)線方程為,
所以點(diǎn)到準(zhǔn)線的距離為,又,
由拋物線的定義可得,所以,
所以拋物線的方程為:.
(2)假設(shè)存在點(diǎn)使以弦為直徑的圓恒過點(diǎn),
設(shè)過點(diǎn)直線的直線的方程為,
聯(lián)立方程得,
設(shè),則,;
因?yàn)辄c(diǎn)總是在以弦為直徑的圓上,
所以,所以
由,
所以
即
當(dāng)或,等式顯然成立;
當(dāng)或時(shí),則有
即,則,
即
所以當(dāng)時(shí),無論取何值等式都成立,
將代入得,
所以存在點(diǎn)使以弦為直徑的圓恒過點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)對設(shè)備進(jìn)行升級改造,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)指標(biāo)值落在[20,40)內(nèi)的產(chǎn)品視為合格品,否則為不合格品,圖1是設(shè)備改造前樣本的頻率分布直方圖,表1是設(shè)備改造后的頻數(shù)分布表.
表1,設(shè)備改造后樣本的頻數(shù)分布表:
質(zhì)量指標(biāo)值 | ||||||
頻數(shù) | 2 | 18 | 48 | 14 | 16 | 2 |
(1)請估計(jì)該企業(yè)在設(shè)備改造前的產(chǎn)品質(zhì)量指標(biāo)的平均數(shù);
(2)企業(yè)將不合格品全部銷毀后,并對合格品進(jìn)行等級細(xì)分,質(zhì)量指標(biāo)值落在[25,30)內(nèi)的定為一等品,每件售價(jià)240元,質(zhì)量指標(biāo)值落在[20,25)或[30,35)內(nèi)的定為二等品,每件售價(jià)180元,其它的合格品定為三等品,每件售價(jià)120元.根據(jù)表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率,現(xiàn)有一名顧客隨機(jī)購買兩件產(chǎn)品,設(shè)其支付的費(fèi)用為X(單位:元),求X得分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 設(shè)命題p:函數(shù)y=在定義域上為減函數(shù);命題q:a,b∈(0,+∞),當(dāng)a+b=1時(shí),+=3.以下說法正確的是( )
A. p∨q為真B. p∧q為真
C. p真q假D. p,q均假
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),直線.
(Ⅰ)求函數(shù)的極值;
(Ⅱ)求證:對于任意,直線都不是曲線的切線;
(Ⅲ)試確定曲線與直線的交點(diǎn)個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,直線與橢圓C交于A,B兩點(diǎn),且.
(1)求橢圓C的方程.
(2)不經(jīng)過點(diǎn)的直線被圓截得的弦長與橢圓C的長軸長相等,且直線與橢圓C交于D,E兩點(diǎn),試判斷的周長是否為定值?若是,求出定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com