【題目】若養(yǎng)殖場(chǎng)每個(gè)月生豬的死亡率不超過(guò),則該養(yǎng)殖場(chǎng)考核為合格,該養(yǎng)殖場(chǎng)在20191月到8月養(yǎng)殖生豬的相關(guān)數(shù)據(jù)如下表所示:

月份

1

2

3

4

5

6

7

8

月養(yǎng)殖量/千只3

3

4

5

6

7

9

10

12

月利潤(rùn)/十萬(wàn)元

3.6

4.1

4.4

5.2

6.2

7.5

7.9

9.1

生豬死亡數(shù)/

29

37

49

53

77

98

126

145

1)從該養(yǎng)殖場(chǎng)20192月到6月這5個(gè)月中任意選取3個(gè)月,求恰好有2個(gè)月考核獲得合格的概率;

2)根據(jù)1月到8月的數(shù)據(jù),求出月利潤(rùn)y(十萬(wàn)元)關(guān)于月養(yǎng)殖量x(千只)的線性回歸方程(精確到0.001.

3)預(yù)計(jì)在今后的養(yǎng)殖中,月利潤(rùn)與月養(yǎng)殖量仍然服從(2)中的關(guān)系,若9月份的養(yǎng)殖量為1.5萬(wàn)只,試估計(jì):該月利潤(rùn)約為多少萬(wàn)元?

附:線性回歸方程中斜率和截距用最小二乘法估計(jì)計(jì)算公式如下:,

參考數(shù)據(jù):.

【答案】1;(2;(3)利潤(rùn)約為111.2萬(wàn)元.

【解析】

1)首先列出基本事件,然后根據(jù)古典概型求出恰好兩個(gè)月合格的概率;

2)首先求出利潤(rùn)y和養(yǎng)殖量x的平均值,然后根據(jù)公式求出線性回歸方程中的斜率和截距即可求出線性回歸方程;

3)根據(jù)線性回歸方程代入9月份的數(shù)據(jù)即可求出9月利潤(rùn).

12月到6月中,合格的月份為2,34月份,

5個(gè)月份任意選取3個(gè)月份的基本事件有

,,,,

,,,共計(jì)10個(gè),

故恰好有兩個(gè)月考核合格的概率為

2,

,

3)當(dāng)千只,

(十萬(wàn)元)(萬(wàn)元),

9月份的利潤(rùn)約為111.2萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】祖沖之是中國(guó)南北朝時(shí)期的數(shù)學(xué)家和天文學(xué)家,他在數(shù)學(xué)方面的突出貢獻(xiàn)是將圓周率的精確度計(jì)算到小數(shù)點(diǎn)后第位,也就是之間,這一成就比歐洲早了多年,我校愛(ài)數(shù)學(xué)社團(tuán)的同學(xué),在祖沖之研究圓周率的方法啟發(fā)下,自制了一套計(jì)算圓周率的數(shù)學(xué)實(shí)驗(yàn)?zāi)P?/span>.該模型三視圖如圖所示,模型內(nèi)置一個(gè)與其各個(gè)面都相切的球,該模型及其內(nèi)球在同一方向有開(kāi)口裝置.實(shí)驗(yàn)的時(shí)候,同學(xué)們隨機(jī)往模型中投擲大小相等,形狀相同的玻璃球,通過(guò)計(jì)算落在球內(nèi)的玻璃球數(shù)量,來(lái)估算圓周率的近似值.已知某次實(shí)驗(yàn)中,某同學(xué)一次投擲了個(gè)玻璃球,請(qǐng)你根據(jù)祖沖之的圓周率精確度(取小數(shù)點(diǎn)后三位)估算落在球內(nèi)的玻璃球數(shù)量(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

2)若曲線、交于兩點(diǎn),是曲線上的動(dòng)點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:設(shè)是正整數(shù),如果對(duì)任意正整數(shù),當(dāng)時(shí),即有,那么稱(chēng)數(shù)列的前項(xiàng)可被數(shù)列的第項(xiàng)替換.已知數(shù)列的前項(xiàng)和是,數(shù)列是公比為1的等差數(shù)列.

1)求數(shù)列的通項(xiàng)公式(用,表示);

2)已知,數(shù)列的前項(xiàng)和滿(mǎn)足;

①求證:數(shù)列為等比數(shù)列,并求的通項(xiàng)公式;

②若數(shù)列的前可被數(shù)列的前項(xiàng)替換,且的最大值為8,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的短軸長(zhǎng)為,離心率為.

1)求橢圓的方程;

2)求過(guò)橢圓的右焦點(diǎn)且傾斜角為135°的直線,被橢圓截得的弦長(zhǎng);

3)若直線與橢圓相交于,兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過(guò)橢圓的右頂點(diǎn),求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高二年級(jí)的數(shù)學(xué)興趣小組釆取抽簽方式隨機(jī)分成甲、乙兩個(gè)小組進(jìn)行數(shù)學(xué)解題對(duì)抗賽.每組各20人,根據(jù)各位學(xué)生在第三次數(shù)學(xué)解題對(duì)抗賽中的解題時(shí)間(單位:秒)繪制了如下莖葉圖:

1)請(qǐng)?jiān)u出第三次數(shù)學(xué)對(duì)抗賽的優(yōu)勝小組,并求出這40位學(xué)生完成第三次數(shù)學(xué)解題對(duì)抗賽所需時(shí)間的中位數(shù);

2)對(duì)于(1)中的中位數(shù),根據(jù)這40位學(xué)生完成第三次數(shù)學(xué)對(duì)抗賽所需時(shí)間超過(guò)和不超過(guò)的人數(shù),完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為甲、乙兩個(gè)小組在此次的數(shù)學(xué)對(duì)抗賽中的成績(jī)有差異?

超過(guò)

不超過(guò)

總計(jì)

甲組

乙組

總計(jì)

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸的極坐標(biāo)中,圓的方程為

(1)寫(xiě)出直線的普通方程和圓的直角坐標(biāo)方程;

(2)若點(diǎn)的坐標(biāo)為,圓與直線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,已知圓與直線相切,點(diǎn)A為圓上一動(dòng)點(diǎn),軸于點(diǎn)N,且動(dòng)點(diǎn)滿(mǎn)足,設(shè)動(dòng)點(diǎn)M的軌跡為曲線C.

1)求曲線C的方程;

2)設(shè)P,Q是曲線C上兩動(dòng)點(diǎn),線段的中點(diǎn)為T,,的斜率分別為,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,一個(gè)動(dòng)圓經(jīng)過(guò)點(diǎn)且與直線相切,設(shè)該動(dòng)圓圓心的軌跡為曲線.

1)求曲線的方程;

2)過(guò)點(diǎn)作直線交曲線,兩點(diǎn),問(wèn)曲線上是否存在一個(gè)定點(diǎn),使得點(diǎn)在以為直徑的圓上?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案