【題目】已知橢圓 上頂點(diǎn)為,右頂點(diǎn)為,離心率, 為坐標(biāo)原點(diǎn),圓 與直線相切.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)直線 )與橢圓相交于兩不同點(diǎn),若橢圓上一點(diǎn)滿足,求面積的最大值及此時(shí)的.

【答案】(1);(2)時(shí), 的面積的最大值為.

【解析】試題分析:

(1)利用寫(xiě)出直線的方程,由圓與直線相切可得的一個(gè)方程,由離心率又得,結(jié)合可解得,得標(biāo)準(zhǔn)方程;(2)把直線方程與橢圓方程聯(lián)立方程組,消去后得的一元二次方程,由判別式大于0得的取值范圍,設(shè)交點(diǎn)為,由韋達(dá)定理得,利用橢圓中的弦長(zhǎng)公式求得弦長(zhǎng),再求得原點(diǎn)到直線的距離(即為到直線距離),于是的面積就可用表示出來(lái)了,再由換元法(設(shè))可求得最大值.

試題解析:

(1)由題意,直線的方程為,即為.因?yàn)閳A與直線相切,所以,…………①

設(shè)橢圓的半焦距為,因?yàn)?/span>, ,所以,…………②

由①②得,所以橢圓的標(biāo)準(zhǔn)方程為.

(2)由可得,設(shè),則

所以,

又點(diǎn)到直線的距離,

,∴,又因?yàn)?/span>

,又,∴,令,則,所以當(dāng), 時(shí), 最大值為,所以當(dāng)時(shí), 的面積的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線相交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為.

(Ⅰ)證明:點(diǎn)在直線上;

(Ⅱ)設(shè),求的內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)開(kāi)展了一系列的讀書(shū)教育活動(dòng),為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查,下圖是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書(shū)迷”,低于60分鐘的學(xué)生稱為“非讀書(shū)迷”.

(Ⅰ) 求的值并估計(jì)全校3000名學(xué)生中“讀書(shū)迷”大概有多少?(將頻率視為概率)

(Ⅱ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書(shū)迷”與性別有關(guān)?

非讀書(shū)迷

讀書(shū)迷

合計(jì)

15

45

合計(jì)

附: ,

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為常數(shù)).

(1)求的極值;

(2)設(shè),記,已知為函數(shù)是兩個(gè)零點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1) 若是函數(shù)的一個(gè)極值點(diǎn),求值和函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),求在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線焦點(diǎn)為,點(diǎn)A,B,C為該拋物線上不同的三點(diǎn),且滿足.

(1)求;

(2)若直線軸于點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若 的一個(gè)極值點(diǎn),求 值及的單調(diào)區(qū)間;

(2)當(dāng) 時(shí),求在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三人組成一個(gè)小組參加電視臺(tái)舉辦的聽(tīng)曲猜歌名活動(dòng),在每一輪活動(dòng)中,依次播放三首樂(lè)曲,然后甲猜第一首,乙猜第二首,丙猜第三首,若有一人猜錯(cuò),則活動(dòng)立即結(jié)束;若三人均猜對(duì),則該小組進(jìn)入下一輪,該小組最多參加三輪活動(dòng).已知每一輪甲猜對(duì)歌名的概率是,乙猜對(duì)歌名的概率是,丙猜對(duì)歌名的概率是,甲、乙、丙猜對(duì)與否互不影響.

(I)求該小組未能進(jìn)入第二輪的概率;

(Ⅱ)記乙猜歌曲的次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列{an}{bn}中,a12b14,且anbn,an1成等差數(shù)列,bnan1,bn1成等比數(shù)列{nN}

a2,a3,a4b2b3,b4,由此猜測(cè){an},{bn}的通項(xiàng)公式,并證明你的結(jié)論;

查看答案和解析>>

同步練習(xí)冊(cè)答案