【題目】如圖,在三棱柱中,底面為正三角形,側(cè)棱底面.已知是的中點(diǎn), .
(Ⅰ)求證:平面平面;
(Ⅱ)求證:∥平面;
(Ⅲ)求三棱錐的體積.
【答案】(Ⅰ)見解析 (Ⅱ)見解析(Ⅲ)
【解析】試題分析:(Ⅰ)由, 及,可證平面.即可證明
平面平面;
(Ⅱ)證明.又因?yàn)?/span>平面, 平面,所以∥平面
(Ⅲ)由即可求得三棱錐的體積.
試題解析:
(Ⅰ)證明:由已知為正三角形,且D是BC的中點(diǎn),
所以.
因?yàn)閭?cè)棱底面, ,
所以底面.
又因?yàn)?/span>底面,所以.
而,
所以平面.
因?yàn)?/span>平面,所以平面平面.
(Ⅱ)證明:連接,設(shè),連接.
由已知得,四邊形為正方形,則為的中點(diǎn).
因?yàn)?/span>是的中點(diǎn),所以.
又因?yàn)?/span>平面, 平面,
所以∥平面
(Ⅲ)由(Ⅱ)可知∥平面,
所以與到平面的距離相等,
所以.
由題設(shè)及,得,且.
所以,
所以三棱錐的體積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列滿足,其中,且, 為常數(shù).
(1)若是等差數(shù)列,且公差,求的值;
(2)若,且存在,使得對(duì)任意的都成立,求的最小值;
(3)若,且數(shù)列不是常數(shù)列,如果存在正整數(shù),使得對(duì)任意的均成立. 求所有滿足條件的數(shù)列中的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn),圓,以動(dòng)點(diǎn)為圓心的圓經(jīng)過點(diǎn),且圓與圓內(nèi)切.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)若直線過點(diǎn),且與曲線交于兩點(diǎn),則在軸上是否存在一點(diǎn),使得軸平分?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】煉鋼是一個(gè)氧化降碳的過程,鋼水含碳量的多少直接影響冶煉時(shí)間的長(zhǎng)短,必須掌握鋼水含碳量和冶煉時(shí)間的關(guān)系.如果已測(cè)得爐料溶化完畢時(shí)鋼水的含碳量x與冶煉時(shí)間y(從爐料溶化完畢到出鋼的時(shí)間)的一組數(shù)據(jù),如表所示:
x(0.01%) | 104 | 180 | 190 | 177 | 147 | 134 | 150 | 191 | 204 | 121 |
y/min | 100 | 200 | 210 | 185 | 155 | 135 | 170 | 205 | 235 | 125 |
(1)y與x是否具有線性相關(guān)關(guān)系?
(2)如果y與x具有線性相關(guān)關(guān)系,求回歸直線方程.
(3)預(yù)報(bào)當(dāng)鋼水含碳量為160個(gè)0.01%時(shí),應(yīng)冶煉多少分鐘?
參考公式:r= ,
線性回歸方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求的普通方程和的傾斜角;
(2)設(shè)點(diǎn)和交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018屆山西省太原十二中高三上學(xué)期1月月考】運(yùn)動(dòng)員甲在最近場(chǎng)比賽中所得分?jǐn)?shù)的莖葉圖如圖所示,由于疏忽,莖葉圖中的兩個(gè)數(shù)據(jù)上出行了污漬,導(dǎo)致這兩個(gè)數(shù)字無法辨認(rèn),但統(tǒng)計(jì)員記得除掉污漬處的數(shù)字不影響整體中位數(shù),且這六個(gè)數(shù)據(jù)的平均值為.
(1)求污漬處的數(shù)字;
(2)籃球運(yùn)動(dòng)員乙在最近場(chǎng)的比賽中所得分?jǐn)?shù)為.試分別以各自場(chǎng)比賽得分的平均數(shù)與方差來分析這兩名籃球運(yùn)動(dòng)員的發(fā)揮水平.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,且,.四邊形滿足,,.為側(cè)棱的中點(diǎn),為側(cè)棱上的任意一點(diǎn).
(1)若為的中點(diǎn),求證: 面平面;
(2)是否存在點(diǎn),使得直線與平面垂直? 若存在,寫出證明過程并求出線段的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,底面是邊長(zhǎng)為2的等邊三角形,平面交于點(diǎn),且平面.
(1)求證: ;
(2)若四邊形是正方形,且,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=4an﹣p,其中p是不為零的常數(shù).
(1)證明:數(shù)列{an}是等比數(shù)列;
(2)當(dāng)p=3時(shí),若數(shù)列{bn}滿足bn+1=bn+an(n∈N*),b1=2,求數(shù)列{bn}的通項(xiàng)公式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com