【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面四邊形ABCD為菱形,A1A=AB=2,∠ABC= ,E,F(xiàn)分別是BC,A1C的中點.
(1)求異面直線EF,AD所成角的余弦值;
(2)點M在線段A1D上, =λ.若CM∥平面AEF,求實數(shù)λ的值.
【答案】
(1)解:因為四棱柱ABCD﹣A1B1C1D1為直四棱柱,
所以A1A⊥平面ABCD.
又AE平面ABCD,AD平面ABCD,
所以A1A⊥AE,A1A⊥AD.
在菱形ABCD中∠ABC= ,則△ABC是等邊三角形.
因為E是BC中點,所以BC⊥AE.
因為BC∥AD,所以AE⊥AD.
建立空間直角坐標系.則A(0,0,0),C( ,1,0),D(0,2,0),
A1(0,0,2),E( ,0,0),F(xiàn)( , ,1).
=(0,2,0), =(﹣ , ,1),
所以異面直線EF,AD所成角的余弦值為 =
(2)解:設M(x,y,z),由于點M在線段A1D上,且 =λ,
則(x,y,z﹣2)=λ(0,2,﹣2).
則M(0,2λ,2﹣2λ), =(﹣ ,2λ﹣1,2﹣2λ).
設平面AEF的法向量為 =(x0,y0,z0).
因為 =( ,0,0), =( , ,1),
由 ,得x0=0, y0+z0=0.
取y0=2,則z0=﹣1,
則平面AEF的一個法向量為n=(0,2,﹣1)
由于CM∥平面AEF,則 =0,即2(2λ﹣1)﹣(2﹣2λ)=0,解得λ= .
【解析】(1)建立坐標系,求出直線的向量坐標,利用夾角公式求異面直線EF,AD所成角的余弦值;(2)點M在線段A1D上, =λ.求出平面AEF的法向量,利用CM∥平面AEF,即可求實數(shù)λ的值.
【考點精析】掌握異面直線及其所成的角和直線與平面平行的性質(zhì)是解答本題的根本,需要知道異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系;一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行;簡記為:線面平行則線線平行.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f (x)=ex﹣ax﹣1,其中e為自然對數(shù)的底數(shù),a∈R.
(1)若a=e,函數(shù)g (x)=(2﹣e)x. ①求函數(shù)h(x)=f (x)﹣g (x)的單調(diào)區(qū)間;
②若函數(shù)F(x)= 的值域為R,求實數(shù)m的取值范圍;
(2)若存在實數(shù)x1 , x2∈[0,2],使得f(x1)=f(x2),且|x1﹣x2|≥1,求證:e﹣1≤a≤e2﹣e.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平頂山市公安局交警支隊依據(jù)《中華人民共和國道路交通安全法》第條規(guī)定:所有主干道路凡機動車途經(jīng)十字口或斑馬線,無論轉(zhuǎn)彎或者直行,遇有行人過馬路,必須禮讓行人,違反者將被處以元罰款,記分的行政處罰.如表是本市一主干路段監(jiān)控設備所抓拍的個月內(nèi),機動車駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):
月份 | |||||
違章駕駛員人數(shù) |
(Ⅰ)請利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;
(Ⅱ)預測該路段月份的不“禮讓斑馬線”違章駕駛員人數(shù).
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋中有五張卡片,其中紅色卡片三張,標號分別為1,2,3;藍色卡片兩張,標號分別為1,2.
(Ⅰ)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率;
(Ⅱ)現(xiàn)袋中再放入一張標號為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率等于 .現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0,表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(題文)已知函數(shù).
(Ⅰ)若在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;
(Ⅱ)若存在唯一整數(shù),使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面直角坐標系內(nèi)三點.
(1) 求過三點的圓的方程,并指出圓心坐標與圓的半徑;
(2)求過點與條件 (1) 的圓相切的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)f(x)=sin2x的圖象沿x軸向右平移φ(φ>0)個單位長度后得到函數(shù)g(x)的圖象,若函數(shù)g(x)的圖象關(guān)于y軸對稱,則當φ取最小的值時,g(0)= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com